Lo ihag -
Ee
LD u,\‘ﬁ ¢ f
< Ple (Evp) ¢
b e
o]
INSTRUCTION MNEMONIC | CODE OPERATION
TDLE DL 00 WAIT FOR DMA OR
INTERRUPT; (R(0))>BUS
NO OPERATION NOP c4 CONTINUE -
5 SETP SEP DN | N-P
y, iz SET X SEX EN N-rX
“ 0 W K SETQ SEQ 7B 1~Q
i 4 e RESET Q v REQ 7A (1 =10
Ji SAVE SAV 78 T-+M(R(X)) h
i L PUSH X,P TOSTACK MARK 79 (XP)T; (X.P)>M(R(2
& Fgeon A THEN PX; R(2)=1
— i RETURN RET 70 M(R(X)=(XP); R(X) +1
e) e
_DISABLE DIS 71 M{R(X))=(X.P); R{X) +1
0-~IE
06 g prEmme it Ll _ \
/]]
,\g 748 I /
(e / I
el U
Input—Output Byte Transfer
: —OP"
,h\ % INSTRUCTION MNEMONIC | CODE OPERATION
| d OUTPUT 1 ouT 1 61 Z.m_,vc_nvm_cm.. R(X) +1;
| nee) o | | NTINES =1
i §)3 D L‘ OUTPUT 2 ouT 2 62 M(R(X))>BUS; R(X) +1;
H1\ N LINES =2
w OUTPUT 3 ouT 3 63 M(R(X))=BUS; R(X) +1;
R \ N LINES =3
L Py T OUTPUT 4 ouT 4 \ 64 M{R(X))=BUS; R(X) +1;
LT \ N LINES =4
M — OUTPUT 5 [oVA -] 165 M(R(X))=>BUS; R(X) +1;
o | N LINES =5
| D-le) / QUTPUT 6 ouUT 6 66 ?.;x_x:#m_thmﬁx_ o I
| L N LINES =6
QUTPUT 7 ouT?7 67 M(R{X))—=BUS; R(X) +1;
1 e N LINES =7
L INPUT 1 INP 1 69 BUS-M(R(X)); BUS—D;
N LINES =1
e INPUT 2 INP 2 BA BUS—M(R(X));BUS—D;
ikl =y 1 N LINES =2
) i INPUT 3 INP 3 6B BUS—M(R(X)); BUS—D;
: ,) N LINES = 3
\¥) INPUT 4 INP 4 6C BUS—M{R{X)); BUS—~D;
@ N LINES = 4
i INPUT 6 INP 5 6D BUS—M(R(X})); BUS—D;
el N LINES =5
| il INPUT 6 INP 6 6E BUS—M(R(X));BUS—D;
N LINES =6
INPUT 7 INP 7 6F BUS—M(R(X)); BUS—D;
N LINES =7

SNOTE: THIS INSTRUCTION 1S ASSOCIATED WITH MORE THAN ONE_
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED. 't
S#NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS

ARE THE ONLY INSTRUCTIONS TH

AT CAN ALTER THE DF A

LJL< |

MANUAL

W

by Dr. A.ABERK

MODUS SYSTEMS Ltd
29A Eastcheap,

Letchwor th,

Herts., SG6 3DA

—c¢ ALY
v | IR
17 o O, .
s ot
TP 9 1178 Fe
I x by ~2gp PP
RO T ¢, Control Instructions
|
| oP
f INSTRUCTION MNEMONIC | CODE OPERATION
IDLE iDL 00 WAIT FOR DMA OR
INTERRUPT ; M(R(0))-~BUS
NO OPERATION NOP c4 CONTINUE -
SETP SEP DN | N-p
Z SET X SEX EN | N=X
o Sy SETQ SEQ 7B |1»Q
&) RESET Q REQ LN]
“SAVE SAV 78 Hﬂ.;—!x: 3
D PUSH X.,P TO STACK *MARK 79 PI=T; (X P)=M(R(2
OL2r8 o A — THEN P3%; R(2)-1
¥ RETURN RET 70 MR (X))=(XP); R(X) +1
gs ¢ 151E
_DISABLE DIs 7 M(R{X))-{X,P); R(X) +1
06 Qm 0-IE

il

_mmouL D

1 — Nl)N.
[P \uﬁ.\w
fl!.'.lJ.ln e

__ Do)

Vg
Input—Output Byte Transfer
=P
INSTRUCTION MNEMONIC | CODE OPERATION
OUTPUT 1 ouT 1 61 IM(R[X))=>BUS; R(X) +1;
| NTINES=1
OUTPUT 2 ouT 2 62 IM{R(X))~BUS; R(X) +1;
/| NLINES=2
QUTPUT 3 ouT 3 | 63 [/ M(R(X))=BUS;R(X) +1;
\ N LINES = 3
OUTPUT 4 ouT 4 | 64 M(R(X))>BUS;R(X) +1;
\ N LINES = 4
OUTPUT & CuUTs 165 M(R(X))=BUS; R(X) +1;
| N LINES =5
OUTPUT 6 OuUT 6 186 ||| M{R(X))>BUS;R(X) +1;
i | N LINES =6
OUTPUT 7 ouT 7 67 M(R(X))=BUS; R(X) +1;
' 'NLINES=7 L
INPUT 1 INP 1 69 BUS—M(R(X)); BUS—D:
N LINES =1
INPUT 2 INP 2 6A BUS—M(R(X)); BUS—D;
N LINES =2
INPUT 3 INP 3 68 BUS-M(R(X)); BUS—D;
N LINES =3
INPUT 4 INP 4 6C BUS—M(R(X)); BUS~D;
N LINES = 4
INPUT 5 INP 5 6D BUS—M(R(X)); BUS~D;
; N LINES =5
INPUT 6 INP 6 6E BUS—M(R(X)); BUS—D;
N LINES = 6
INPUT 7 INP 7 6F BUS-M(R(X)); BUS-D;
N LINES =7

LB

®NOTE: THIS INSTRUCTION 1S ASSOCIATED WITH MORE THAN ONE.

MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED. - &

$#NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF

i

FOREWORD & IMPORTANT NOTES

This manual provides the beginner with g "once-over-lightly" account of m:m major
topics of swnuoannaﬁ:ww:m. This field includes some of the most interesting and up-to
the-moment ideas provided by modern technology. It is impossible in a short handbook
of this type to cover all the material necessary for a complete understanding. Instead
an attempt is made to guide the owner through the subject in a practical manner by y
actual experience with a real machine. The main advantage, therefore, of the EDUKIT over
a more complete and academic treatment of microcomputing, is its accent on "hands-on
experience", The reader need no longer study abstract texts on the subject without
being able to try the ideas out - instead, each stage of the learning process is
accompanied by practice.

The method chosen to communicate ideas is one of example rather than lengthy
explanation. The latter is left for the more complete and academic books which any
EDUKIT user should consult as socon as pessible. Indeed, the kit and manual must be
viewed as a "primer" to allow more complex treatises to be understood if the user's
interest is sufficiently aroused. If not, nothing is lost.

It is hoped, however, that the EDUKIT will st imulate an even greater curiosity
and allow this interest to flourish towards greater things.

We wish you all the very best of luck!

Dr. A.A. Berk

MODUS SYSTEMS Ltd.,
29A Eastcheap,
Letchworth,

Herts.

©ago

NOTES

1. The www includes a socket for the Microprocessor only - if you are very inexperienced
or 4Hm: to expand the unit further, a set of sockets for the other chips is most
desirable. A set of sockets is available from MODUS for g2.60 4 VAT.

2. Ready assembled and tested units are available from MODUS - £39.95 + VAT + 80p PP.

3. zoccm.»w a recognised, Government recommended Software and Hardware Consultant house,
and will be most happy to quote for your control and/or software problems in general.

4. Technical backup is available for our products, and if the kit will not work after
assembly, MODUS will undertake to repair on a time-cost basis - minimum cost £10.

54 q:m.pmom User's Manual, and Tom Pittman's "Short Course" (see Appendix I) are
available from MODUS - the Manual costs hm.ww + 50p PP - contact MODUS for

the price of the "Short Course".

Sincerest thanks are due to Janet Morgan and Anne Noon for their extensive
and valuable assistance with the production of this manual.

| Next, note that in addition to various dents in the upper surface, one end h &
| noteh cut into its upper surface as shown above. This notch is used to ensure that
Tt ! package is inserted in position the correct way round. Failure to observe the corre
orientation will totally destroy the IC's. The notch must tie up with the component
1 overlay diagram.
L (% Watt 5% Sometimes, instead ofyor in addition to,sthe notch, a small hole or bump will appear
on the upper surface of the IC to identify Pin 1. The pins are numbered, on all
L 1K (17 off) chips, anticlockwise around the chip, as shown, when looking at the top surface. The
2K2 (5 off) H largest IC, the Microprocessor itself, is a 40-pin device, and a socket is included, for

100 (3 off) ~ it, in the kit. Do not remove the IC from its packing until absolutely necessary.
10K (2 off) i CAPACITORS
18K " There are just two types of capacitor :

a) Electrolytic : C€C 1, C 2, C 3 - all identical.

ansistors

These devices have two pins - one of them is "4"

and one "-", as shown on the body of the device.

The + side is marked on the PCB so that these capacitors
can be inserted the correct way round.

4001 — 4

4148 (Typically) (7 off) .
d Led's (3 off)

2926 (typically)

D 500 (2 off) - b)) | Genamie ity Gafle- By C i64::Coli

These are flat devices with two pins and can be
inserted any way round - C4, C5, C6 are marked "10n"
and C7 is marked "100n" - perhaps with some other
letters, depending upon the type supplied.
RESISTORS

All resistors have red bodies and are similar, apart from coloured bands which
identify the value of the resistor according to the following table:

3 mW»ouW Bands
s GoLD
,hzm ﬁ.ﬁﬁw Resistor | Value First Second Third
R1-R17 1K BROWN BLACK RED
R18-R22 2K2 RED RED RED
ed and described below. R23-R25 100 BROWN BLACK BROWN
R26, R27 10K BROWN BLACK ORANGE
R28 18K BROWN GREY DRANGE
cleaning Umwowm g) Resistors may be inserted any way round.
and must not DIODES, TRANSISTORS, LED's.
_ The transistor (TR1) has 3 leads and 2N2926 written
grated circuits (IC's) 2 on it. It must be inserted, as shown here, with
s are of the "dual in b correct pins in correct holes.
bn each side of the ’ o
] a There are three types of diode. They must all be inserted the correct way around.
a) IN40D1 (D1) has a black bddy and a silver ring around one end.

, ']ﬂvl j._mn._..:amzn_s:mwwumcnzwwrﬁjm_ﬁmnrmwaum
, osw:mmosvo:m:mocmapmz.
it » oy oo

b) Small signal diodes: D2 - D8. Again, one end is striped - with Black or yellow -
and must tie up with the striped end shown on the

In order to —& Component Overlay.

st read the device : :
ination of numbers c) Light-Emitting Diodes (LED's) LD1, LD2, LD3.

s other letters t
an LS in the middle. ﬁ ToP OF \PU.@ qqmmm are translucent red objects with two
hazm :2 pins - one longer than the other. The long pins
TOP must be inserted in the holes as shown in the
VIEW nﬂﬂ diagram, with PCB oriented accordingly.

LoNE ‘__?.

% TowARDS KEYBOARD

«GITAL DISPLAYS DI1 and DIZ (FND 500) =0 -
If you inspect the upper surface of these devices
the number 8 can be seen, with a decimal point

L]

P\.

showing. The devices must be inserted into the
ON/OFF_SWITCH

PCB with this point in the position shown on the
Component Overlay.
The switch should be positioned the correct way round and soldered to two pins left
upstanding on the PCB.
Disregard the words "On" and "Off" on the switch, and bend
the pin as shown, to fit them in neatly. A piece of
< wire left over from the resistors can be stretched
over the threaded portion of the switch and soldered
to the pads below the PCB. The nut on the switch should
be left in place to raise the switch body off the PCB and
FW, prevent the metal portion from shorting PCB tracks
together.

EeEs

,ﬁ
-
CONSTRUCTION

You will need the following items:

a) A pair of side-cutters, capable of cutting the small pins supplied.

b) A watchmaker's glass or magnifying glass.

c) A soldering iron of around 15 watts power and fitted with a 3/32" bit.

d) Some flux-cored solder of thickness about equal to that of the wire leads on

the resistors supplied. (21 $.w.9.)

e) A bottle of methylated spirit and a household paint brush.

To attempt assemby without these tools, or with tools of a different specification,
will certainly court disaster.

The experienced contructor will not need to read the following in very great detail,
but everyone should glance through at least once.
BEGINNERS START HERE

If you are not adept at soldering and construcing electronic devices, then you
should read the following in very great detail. This kit is aimed at teaching as many
aspects of the "new technology" as possible, and construction is one of the most important.
In addition, by following the steps carefully, you will pick up a vast amount of experience
and jargon concerning electronic components.
DESCRIPTION

The set of components in the kit will be assembled onto a single "board" and it is
this board which is at the centre of the design.

Examine the fibre-glass board carefully. This is called a Printed Circuit Board

(PCB). It has "tracks" on both sides, composed of "tinned copper" which conducts
electricity. These tracks connect the components of the EDUKIT together, as well as
conducting power throughout the system from the battery or power supply.

You will notice that there is a very large number of holes in the PCB. Some of
them pass through tracks on the top of the board and tracks on the bottom. By passing
metal pins through these holes, a complex pattern of interweaving connections can be made

from topto bottom on the two-dimensional surface of the PCB without tracks crossing each
other and shorting out. Some of these pin-through connections occur in the middle of “
wide PCB tracks, the rest occur as square "pads" with holes through thecentre. You
should inspect the board and check you can identify places where the pins should go

through - if you put too many pins through the board, other components may not fit in later.
SOLDERING 1,

Your first task, then, is to push pins through the PCB and solder them top and

bottom. If you have never soldered before, this task is excellent for Hmmnjwam on
before moving on to the more delicate components. Fd an explanation of soldering, see
AppendixII ., Do not, at this stage, pass pins through any other holes.

Having soldered the pins in, they should be clipped close to the board wo.nmmwm:

the appearance and prevent them fouling on other components. The final operation,
before continuing, is to clean all the solder flux from the top and bottom of the board
using a household paint brush and plenty of meths.

Having done this, the PCB should be carefully inspected from the top to look for any
through-connections left unmade. Then, each pin should be checked to ensure it is
soldered top and bottom. Do not forget the four pins next to the keyboard section!

Check, with a glass, that there are no bridges of solder between two pins or between pins
and nearby tracks. If any are found, remove them with the soldering iron or a sharp knife.

L

KE YBDARD -6 -

The switches come apart and are easily reassembled if necessary. The body of the
switch is composed of a thermoplastic which easily melts at soldering temperatures and
extreme care should be exercised when soldering them in place. If too much heat is applied
the pins move into the body of the device and prevent correct operation. Locate the
20 switches in their positions on the board, place a flat piece of cardboard over the tops
and invert the PCB, holding the board against the switches to prevent them from falling out
Rest the assembly on the bench and take steps to ensure that all the switches are press ed
firmly against the PCB. To do this, build up a pile of paper, for instance, under the
top half of the PCB to the same thickness as the switches and place a heavy object in
the middle of the PCB. This will level the PCB up with respect to the bench and push
the switches firmly against the board.

Soldering of the switches should be done swiftly and carefully and without applying
an end-on force to the pins or they will recede slightly into the plastic bodies of the
switches. The pins can be cleaned very carefully beforehand but should not be tinned until
in position - try not to touch the pins as any dirt or finger-grease impedes soldering
and hence elongates the process and heats up the pins unnecessarily.

Care with this procedure produces a keyboard giving many hours of satsifactory use.
Try the keys after soldering, each one should "click" under an even pressure to signify
that contact has been made. If not, take the top off the switch, remove the metal disc
inside, and check that none of the 3 metal pads inside has been pushed , even slightly,
up into the plastic body. If one is slightly raised, apply the soldering iron to the
pin beneath the board and gently push the metal back into place from the top pad itself.
Any key not making proper contact should be dismantled and cleaned carefully.
Integrated Circuits, sockets, digital display

Identify each integrated circuit and, except for the 1802, place it (the right
way round) on the Component overlay. These chips are very robust and do not require
special handling. When you are satisfied that everything is quite correct, transfer the
chips, one by one, to the PCB and push the pins through the holes. They may need bending
slightly, but once a chip is in place it will usually remain there even when the board
is inverted. Check that each IC is pressed firmly against the PCB's upper surface -
some solder may need to be removed from ore or two pin-through joints to allow all the IC's
to fit in correctly. The IC's should then be soldered with care. Work quickly to prevent
any IC pin from heating up too greatly. Use the minimum amount of solder to prevent
solder-bridges from occurring between nearby pins and tracks. Examine the 40-pin socket
and you will discover that one of the top "inside" corners is filled-in with a wedge
to identify the position of Pin 1 - it will help you to insert the 1802 correctly if
you line this wedge up as shown on the Component Overlay. The socket pins will not stand
being bent unecessarily and overheating will melt the plastic body - solder this component

carefully while pressing it firmly against the PCB. Do not insert the 1802 yet.

Both FND500 digital displays should also be pressed firmly against the PCB and
soldered in place.

The bottom of the board should now be cleaned throughly with meths again and in-
spected with the glass for solder bridges. Take care not to allow the meths near the
key switches.

Theoperation of cleaning and inspecting takes a minute or two but is one of the
best investments of effort possible during the assembly.
0ften, a possible solder bridge is washed away along with the flux.
Discrete Components (resistors, capacitors ete.)

Notice how some of the resistors are stood on end while others lie flat.

@ Push their leads through the board without straining the

body of the Compoent, solder in place and clip the excess
.._hnBHUN_. lead close to the board.

The same goes for the other components. Be careful not to force the capacitors and

transistor too close tothe PCB or the leads will be forced away from the device.

The LED's may fit close to the PCB or perhaps suspended slightly above it, on their leads.

This depends upon the type supplied.

It is a good idea to identify all the Components with correct orientations before
soldering any in place. All these Components are physically delicate and will not stand
overheating or undue force.

S
The final soldering operations are for some extra pins and the ON/OFF Switch.
Pins should be inserted, from the top, for the switch leads to solder too. These
pins should be left standing up on the top of the board, but may be clipped beneath the
board after soldering. Pins must them be inserted for 0 volt, + 5 volt and + 6 volt
power supplies and soldered and clipped beneath the PCB only.
The only holes remaining unfilled are eight holes down the sides of the 1802 which

are used for future expansions and should remain unfilled until needed . Any other
holes are mistakes and should be checked carefully.
Keyboard Legends

The operation is to cut the card supplied into horizontal strips of keyboard

legends and stick them in place as shown on the diagram. "Blue-Tack" or some similar
material is ideal for this purpose as the key switches must be easily accessable for
disassembly and cleaning. Use the minimum amount of adhesive possible to prevent it
from being caught up in the switches’ movement.

A spare set of legends is included on the card-just in case!
Inserting the 1802

This component may be damaged by excess static electricity. It is packed with
pins shorted together in Conductive foam, aluminium foil or special antistatic tubes.
You should Earth yourself by touching a cold water pipe while you handle this device.
The pins will need bending before insertion into the socket. As you insert the pins,
check that none are bent under the IC. For safety, some time should be spent on
this operation.

When finished, a final check must be made with the glass for solder bridges - the
bane of even the most experienced constructor!

CHAPTER 2 L

SOME MICROCOMPUTER THEORY

A computer of any kind is, primarily, a machine cpable of executing a logical set
of instructions. These instructions are stored in the machine's memory by the user
and the machine is then forced to execute these commands. This list of commands is
called a computer program. On the EDUKIT, programs are entered through the Keyboard
in a special code which will be described later.

MICROPROCESSOR UNIT (MPU)

The heart of any computer is its Central Pracessing Unit (CPU). 1In a microcomputer
this device is called a "Microprocessor Unit" (MPU) - the MPU is physically smaller than
the CPU of a large computer installation. The CPU or MPU is wired in, electrically,
to receive the program commands from memory, one by one, to interpret and execute them,
while controlling all the devices in the system simultaneously.

MEMORY ‘

The programs are stored in electronic components referred to as memory devices -
the 2111 chips on the EDUKIT perform this function and the machine automatically stores
the information input from the keyboard in these devices. The EDUKIT has 256 separate
memory locations - each with its own electrical label or "ADDRESS".

COMMUNICATION

A set of microcomputer devices, no matter how sophisticated, is useless unless
communication is allowed between members of the set. The block diagram (Chap5) shows
the Communication path of the EDUKIT. The MPU "sits" at one end of a set of BUSES.
There are so many interconnecting wires involved that they are "bundled" together, for
convenience, into the collections of "Buses" of wires devoted to similar functions. The
DATA bus (8 lines) is used by the MPU to fetch information from,
and store information in the memory itself. These functions cannot be performed simult-
aneously,and it is up to the MPU to control the activities through the Control Bus.

When an electronic device of any kind is asked to perform an activity, the time
it takes to react depends upon its nature - mechanical devices are slow, integrated
circuits are very fast. Different circuits react at different speeds and hence it is
essential to requlate the MPU's commands to its subordinates in a fashion which is
slow enough for its slowest components but fast enough to use a computer rather than
"do it by hand". To enable the MPU to act sequentially at the right speed a "clock"
is always included in the system design. This clock gives out pulses used by the MPU
to time its actions carefully.

Thus, if a program (set of instructions) is stored in memory, each instruction must
be fetched and executed, in the correct time frame, before the next is fetched. To
ensure that the right piece of data is fetched along the data bus, each piece of data is
stored in a separate memory location in the memory block. To select the correct location.
uniquely, each memory location within the block has an address which sets it apart from
all others. The address of a memory location is very similar to that of one's house.

A letter is sent to your home by placing your address on the envelope. The address is
recognised by the postal system - County first, Town next, road next and finally, the
number. The letter arrives at its destination via a complicated set of routes.

In the same way, when the MPU wishes to communicate with a given memory location,
it writes the appropriate locations onto the Address Bus lines and the memory block
reads the Address Bus and switches theData Bus to that location uniquely. It is up to
the MPU, via the Control Bus, to say whether it wishes to STORE data contents at that
location , or READ data onto the Data Bus from memory. If the latter, the MPU
expects information back along the Data Bus.

The MPU, therefore, controls the system via the Buses using some built-in intelligence.
DATA AND ADDRESS NOTATION

So far, no system has been described for the format of either the Data or Address
information which "flies" around the buses. A quick glance at the Circuit Diagram in the
Hardware section of this manual will reveal a set of wires labelled DO - D 7 and
another A 0 - A7. These are Data Bus and Address Bus respectively. A glance at the
circuit diagram also emphasises the need for a block diagram to unravel the workings of
a system!

Fach line in a bus may carry only one piece or "BIT" of information at a time and
in a typical Bus - B bits are sent simultaneously; larger Buses carry even more for each
"tick" of the MPU's clock. A further restriction is placed on the BIT for a number of
fundamental reasons. It may assume one of only two states: 0O volts or +5 volts. These
states are labelled "O" and "1". A line is said to be in the "1" state, for instance,
if a voltage measuring device on that line would read + 5 volts (in fact, less voltage
would suffice - but that discussion belongs elsewhere). If O volts is read, the line is
carrying a "0". The measuring device must be very fast, however, as Buses normally
change state at speeds of more than one million times per second - quite a respectable

-y -
speed by Human standards, but relatively slow for most simple electronic logic circuits
on the market today!

Thus, at any time instant, the Bus lines will contain a "pattern" of eight bits
which, as far as the MPU is concerned, is one piece of data (or Address) - normally
referred to as one BYTE.

Thus :

1 BIT-. = @-or -1
8 BITS = 1.BYTE

Since any line has just two possible states, the number 2 is of fundamental importance
in computing, just as the number 10 is in everyday affairs. We say that the base of our
"normal" numbering system is 10. If a number is allowed to have two digits, it may
represent any one of 100 different values - i.e. nos. W Lty ivee iveiais 1 0E) 1 R)
Notice how 0 is included to produce 100 numbers. i.e. 2 digits allow pcw (or 10 x 10)
numbers. Similarly, 3 digits allow 10% = 1000 different values : 0—999,

A binary digit (BIT), however, is only allowed to take on one of 2 values. Thus a
two-BIT number may only have value = 00, 01, 10 or 11 - i.e. 4 = 22 different values.
Similarly, 3 bits give 23 = 8 values. Thus, 8 lines, each having just one of 2 values
(0 & 1) has 28 = 256 different possible patterns of 1's & 0's - remember this number,
it is very important! In binary, therefore, we say we are counting to BASE 2.

Normally, a digit communicated by humams may have one of the states 0,1,2,3,4,5,6
7,8,9 - notice again how the system starts at 0 and not at 1. More complex numbers are
built up as follows :

number 387 = 7 ones
+8 tens
+3 hundreds
and everything is 'based' on powers of ten.
I, one hundred = 102 (or 10 x 10)
one ten = 101
one = 100

The latter may be unfamiliar and is a mathematical law which must be learnt.

Thus, 387
may be shown on a diagram as follows:-

102 10! 100

5 8 7

where the lower row of numbers is the number of 107 units to be included in the final
number - this table, therefore, implies that 387 contains three "ten squareds", eight
"ten to one's" and seven "ten to zero's".

Similarily, 1594 contains:

2

10° 10 10! 100

il 5 o 4

one thousand, five hundreds, nine tens and four ones.

This system of describing numbers is called the "decimal system" as it is based on
ten. The system originated, presumably, because of the set of ten fingers and thumbs
we all carry, and use, even today, as primitive counting devices. Luckily, early man
did not include his toes or we should have twenty digits in our counting system!
computers, however, were notably absent from prehistoric man's environment, or we could
now be using the BINARY COUNTING SYSTEM. Any large number is built up from 1 and O in
precisely the same way as that described above.

Consider a Bus of 8 lines, D7, D&, DS, D4, D3, D2, D1 and DO, containing the following
pattern of 1's and O's: 10010111 - how are we to interpret this number in our everyday

system? The answer is found by drawing a 2's table as we did above for ten:
2’ 26 2% 28 23 22 21 20
i 0 0 1 0 1k 1 1
(here, as before, 20 1)

The trick is to build up the final interpretation of the number as we did for 3g7
L.e., the

above. The lower numbers denote the rumber of 2N's found in the final value.
table says to add up the following:

Electronic

R

Ziax2le1x 0

1x2 +0x 26 +0x 2 +1x22+0xDB+1x2 i g
which equals:

128 + 0+ 0+ 16 +0+4+ 2+1,

Which is 151 in our normal base-ten language.

0111 = (151)

Mwmmwnwwzmwwjpm :cﬁmmmc: can give rise to confusions i e.g. 101 could be binary,
and equal 1 x 22+ 0 x 21 + 1 x 20°= five (in decimal), or(in decimal)equal to
one hundred and one. ;

The data on the Data Bus or Address Bus is not always to be interpreted simply
as a number - sometimes it is a numerical code for an instruction to be executed by the
MPU - sometimes a series of 1's and 0's to switch a bank of me:nm on or offj; but always
the pattern of 1's and 0's can be written down in decimal acsmwpnmw woas. as above, ;
more conveniently than in the original binary. I.e., 151 is a more convenient chmwwoz
for the pattern on the Data Bus than 10010111. The problem @m that the Hmwnmﬁ Hw.mms
more descriptive of what is actually happening on each Bus line - the decimal equivalent
is rather hard to convert back to 1's and 0's! ; ; ;

To solve this problem, an alternative numbering system is :mma which is mmwppx
converted to binary, yet more compact to write down. This system is ammmﬂ, in microcomputers,
upon sixteen instead of ten or two. The system is called HEXADECIMAL (six + ten) or umx.
for short. Its convenience, described below, arises from the simple fact that 16 = 2%,

(Any base, incidentally, which is a power of two would be wvvaomcwm.wc the following
process. "E.g., using 8 = 2’ gives rise to the OCTAL system not considered here)

To define the numbering system, a set of digits must be agreed upon.

0-9 are chosen for DECIMAL (10 digits)
0 and 1 " " BINARY (2 digits)
0-9 and A-F & W HEX (16 digits) - : i
The digits 0 - 9 are supplemented by the first six letters of the alphabet for this
process. If one had fifteen fingers, counting would proceed as follows:-
0 = 'no fingers'
1 = 'one finger'
etc.
9 =
A =
B =
E =
etc.
F = 'fifteen fingers'
Larger numbers are built up as follows:-
bmw is H:wmnuwmwmq as
laga Bigh C|h 10|
T R R S
Thus, (483)¢ SR 256 % 1T . 16 30K vao
(1203)1q

Hex is even more compact than decimal for describing a binary number and w:m

following table shows how to convert between Binary, Hex and Decimal for the sixteen

We indicate this by the notation:

'nine fingers'
'ten fingers'
‘eleven fingers'
'twelve fingers'

l

(again, 160 = 1)

Hex digits.
BINARY HEX DEC
0000 0 0
0001] 1
0010 2 2
0011 3 &,
0100 4 4
0101 5 5
0110 6 6 .
0111 7 7 Each Hex digit is
1000 8 8 "equivalent" to 4 Bits.
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F; 15

Patterns of 1's and zero's on any 8-bitbus may be conveniently written down at ~ 1 -

any instant by just two Hex digits. The convention as to the order of the lines is
described in the following diagram for a typical Bus state:

Address Bus: A7 | A6 T A5 L RG] A3 A2] Al | Aq
State : 1 fmesEn T s Tl i
LHex : 9 D

Notice how the least significant BIT (binary digit), A0, is always written over to
the right - as in our normal numbering system : where eight, for instance, is the least
significant, digit of 378.

Thus we say the Address Bus above, contains the "ADDRESS" 9D. This will set a
unique memory location. If the Data Bus then contains (for example) :

Data: D7, D& .05 L D4 D3 | 'D2. L. .D1 {1 DO
Binary s 0 0 1 0 1 0 0 0
Hex 3 2 8
we say that data 28 has been stored in or read from Address 9. Be careful not to
confuse 28 with "twenty-eight". Address and Data are always in HEX except where -
otherwise stated and the reader should develop the habit of saying, for instance, 28 as
"two eight" rather than "twenty eight". This will prevent automatic confusions from
arising - "two eight" in Hex is equal to forty in decimal!

This describes the system used for counting and labelling memory locations in
microcomputers. The ADDRESSABLE memory locations in the EDUKIT can be described in the
following map:

FF 8 bits
FE 8 bits There are 256 locations in the
: . EDUKIT'S Addressable Memory - each |
B . labelled by a pair of hex digits and
i 5 each containing 8 bits of information. |
02 8 bits
01 8 bits
0o 8 bits
To understand the map fully, the method of counting must first be explained. In the I
previous table, the first 16 Hex numbers are described. Thus, counting in Hex begins
at 0, goes through 1,2,3, etc, to 9, just as in our normal Decimal system. Then comes

A - F. "What comes after 'F!' @uwm the main question. The answer is found from our
Decimal system:
0,15 25 5, 0 sae o o L9 00 Wi apah 10 200 P E
After the last single digit, comes 10 (ten), I.e., the least significant digit (as
it is called) is set to O and the next digit (to the left) to 1. Then comes 11, 12, etc
up to 19. Again, the least significant digit is set to 0 and the next digit incremented
by one to give 20 (twenty). 1In Hex, the system is similar, but the most significant
digit is incremented (by one) after F instead of 9. 1I.e.:
01y - ZyFa8n: A et sl A B Bo DL B G iRe A0, L L 2 303 100 e 5 IF, 20,21 0677, . Jete,
The 10, for instance, is not "ten" but the next number after "F". The next number after o
2F is 30 and so on. The next number after FF is 100 and is too big to be represented by _
8 bits. Thus, if only 8 bits are available for presenting data, the "1" in the "100" is
discarded and the next number after FF is 00 - back to the begimning. This is exactly
what happens in the EDUKIT. If you try to go above FF, you simply start back at the
bottom of the Address Map again. We say that the memory block "wraps around" on itself g |
after 256 bytes.
Addition in Hex is similar to our normal Decimal Addition.
567 and 850, (in Decimal) we perform the following calculation:

To add two numbers, e.g.

5637 we add 7 and O together first (the least
+.-8 540 significant digits) and write down any "carry",
7 which is zero here.
0
1647 Then 6, 5 and any "carry" are added and the |
850 carry, "1" here, written down. |
+ Finally, the process is completed with the i
1415 final carry (again "one") appearing in the most |
significant position (far left).
A L] Note that the maximum carry possible during addition

of two numbers is one - even if you add 999 tg 999,

Sl
Addition in Hex is similar - the prime difference is that "carries" are not performed
after 9 has been reached in any column, but after F instead. For example : 3 +F =D, in
Hex, because D = A + 1 + 1 + 1. Similarly, 5+ A = F. However, if the result is above
F, atlfcarry! is generated. E.G., 6 + A = 10, 8 + A = 12 etc. You will need to be able
to add any two Hex digits to understand the next step.
Try checking that:
9+ 3

C, 6 +E = 14 (do not pronounce this as'fourteen"!
use "one four")
ands: s Eak B S5EE
Use your fingers if you must - most people do!
in Addition, is a "one'".
To add the multidigit numbers 10463 and FAB68, proceed as follows:

Again, the maximum possible "carry",

1 DD 8 +13='8;. carry: 0.
FAB&6S C+6+carry = 12 - i.e. carry 1, 4+B+=10,
T0B0 78 0+ A+ 1=B (carry 0), and finally,
1+F + 0= 10 and the final carry appears
1- 0:+2: 10 in the most significant position.

This should be practiced by trying the following excercises, the answers to which

are given after the Summary to this chapter.

ay' P62 e Rddigig b) ABCD +69

c) The answer to: E 797 + 8 7 6 is not given - you'll know the right answer
if you can eat it!

The point of learning this arithmetic is, firstly, to be able to use the EDUKIT's
Memory Map correctly and, secondiy, because one of the MPU instructions is Binary Additon
of 8-Bit numbers - i.e. 2-Hex-digit nuwbers may be added together and displayed by the
computer. By "ganging" such additions together and "carrying" from one to another, as
above (a maximum of "1", remember), numbers with any number ofdigits may be added.
Multiplication is the next step and simply consits. of many additions - e.g. 3 x 6 is
merely a question of adding together three 6's - a reasonably straightforward routine.

To return to the Memory Map and Programming : Instructions, in general, are nothing
more than the contents of one, two or three successive memory locations, and any program
has all or part of its first instruction stored in location 00, next part or instruction
in 01 etc., etec. The MPU fetches the contents of these locations one after the other
and executes them. The electronics of the EDUKIT allows the user to set up this program
for the MPU through the keyboard and then Command the MPU to execute the program. The
program must be self-terminating or end with an instruction to tell the MPU to run the
program again from the beginning rather than ploughing straight through memory, trying to
execute indiscriminately,the contents of every available memory location.

The instructions, themselves, are stored in memory using a special code - each
instruction has one such OPERATION CODE (OP code) defined for it by the MPU manufacturer.
For instance, if the user wishes to switch on the Q LED, there is a special instruction
called SET Q having Hex Op-code 7B. This represents an 8-bit pattern of 1's and 0's which
may be stored in address 00, for instance. When the RUN state is entered, the MPU places
00 automatically on the Address Bus, along with the necessary Bits on the Control Bus, and
7B (contents of 00) appears, from memory, on the Data Bus. This is read by the MPU,
and executed, and the Q light comes on. The MPU then automatically fetches the contents
of 01 and executes it etc. The list of instructions available is printed in Appendix III,
and described in detail later.

SUMMARY
a) Buses have lines, the states of which are described by 1's and zero's or by Hex digit:
b) Each memory location contains 8 BITs (binary digits) called 1 BYTE. This requires
2 Hex digits because each HEX digit represents 4 BITS.

c) Bytes are stored in memory and may be interpreted by the MPU as program commands.

d) Each memory location has an 8 Bit (2 Hex diqit) address, and this allows 28 = 256

different possible addresses.

e) Addition in Hex involves the same principles as those in decimal, with the "ecarry"

(0 or 1 only) occurring after F instead of 9.

b)AC 36.

Answers to exercises : a) AD OB

CHAPTER 3

K

INITIAL USE

Having soldered the EDUKIT together, its operation must be checked. If you refer
to the Components Diagram, you will notice three power supply pins. If you are using
a 6 volt battery or supply, the positive(+) side must be comnected to the + 6 volt pin,
and the other side (-) to the 0 volt pin. If a + 5 volt supply is being used the + 5v
pin is used instead of the + 6 volt pin. These pins are also marked on the PCB surface.
The device takes between a third and half an Amp during operation, and thus a very small
battery is of little use. Two large three volt batteries are satisfactory if connected
in series - i.e. plus to minus to form a chain of batteries with one positive and one
negative end. Alternatively, a power supply is the long term solution, and the comp onents
for a suitable supply may be purchased from MODUS.

A word of caution is necessary at this point. The power must be connected the correct
way around or permanent damage will result. In addition, no more than + 5 volts or + 6
volts must be connected to the respective pins. As a 6 volt battery wears down, however,
its voltage drops sufficiently to allow it to be connected to the + 5 volt pin. If the
battery has not been in use for an hour or two, it will "rejuvenate" itself slightly
and return to a normal voltage for a short while ; thus, a 6 volt battery should be tried
on the 6 volt terminal first until it stops supplying enough power, before
swopping to the + 5 volt pin. v

Having connected the EDUKIT to a suitable power source, some of the LED (Light
Emmitting Diode) lights should be glowing red. If not, refer to the section on trouble-
shooting.

Assuming normal operation, try pressing the R and L buttons on the keyboard and note
the effect on the associated lights. Pressing R should change the state of R light - if
it was off, it should light and vice versa; similarily for L. By this means, the R and
L lights may be 1lit in any pattern - i.e. both on, both of f or just one on. Check this
is possible and practice doing so before reading further.

The next step is to switch the toggle-switch to M/P (i.e. to right). This protects
the memory of the computer from being overwritten and is called MEMORY PROTECT. Now,
press R and L until both LED's are alight - this RESETS the machine. It is now ready
for you to command in some way. Press R until the R light is out leaving just the L
light on. This puts the computer into a state called the LOAD mode. In this state,
the computer's memory contents may be loaded with a program, or examined, for checking -
purposes. You are going to READ the memory's contents - all 256 locations, if you wish.
Press the I (or In) key once. The two-digit display just above the keyboard will noy
be showing you the contents of the Address00. Each digit shows one of the 16 Hexadecimal
digits 0-9 or A-f in the following format - some of the letters are upper case and some
lower case - make sure you can recognise them - take careful note of the difference between
the letter B and the number 6.

e | W M|)| WA (SRl e\ P | B | B | W B | R | Wl | BRI
] A =8 S el e PR A P Rl e = P el e

Two Hex digits will have appeared, compare them with those in the diagram above.
Try pressing I again, the contents of 01 will be displayed. If you continue pressing
I, the contents of each memory location from 00 to FF (256 locations) will be displayed.
The next location after FF will be 00 again and the process will repeat. Normally,
switching on the machine will store a random set of numbers in memory which will be dis-
played, byte by byte, by the above process. If you are unfamiliar with Hex displays,
step through memory, as above, checking you can read the displayed characters accurately
each time. To start displaying from the beginning again, first RESET the machine back
to the start by pressing R, thus lighting both lights again. To read the contents of
00, press R again to leave just the L light on and press I. Again, further pressings
of I will display contents of 01, 02, 03 etc. This should be practiced now.

ENTERING DATA AND PROGRAMS

The above describes how to view memory - an action you will always have to perform
after loading your own memory contents.

To load some data, Reset by lighting R and L lights and switch R off with the R
button as above. The LOAD mode is thus entered again. This time, however, set the
teggle switch at the top of the board OUT of the M/P position - i.e. to the left. This
removes Memory Protection (M/P) and allows the memory's contents to be changed. What-
ever you type into the keyboard can be stored at locations 00 at this point by the
following method:-

Suppose 7B is to be stored in location 00. Press 7 key, then press B, then press I.
This is represented by Tg@ The Hex display should show 7B at this point.

-

Bl

b

If not, press the AM (Amend) key and, still keeping it down, nummmggl the keys are = 14
sometimes sticky m:n@ .Sm< have to be pressed several times for the required effect.
Watch the display because whatever you press while the AM key is down will appear on the
Hex display and be stored in the current memory location at the same time. 00 is the curren
location until I is pressed again.

1f 7B appears and remains there with your fingers off the keys, it is successfully
stored. Do not press I after the AM key or the next location will also contain a copy
of the corrected data and two copies will thus have been written to memory.

To pass to the next location try entering 7 A by

then %%% m:n_@ @@.

These four bytes represent a program and when the RUN mode is entered, the program will be
executed byte by byte. First, however, the contents of the first four addresses in memory
will be reviewed, to check that they contain the information just keyed in.

To view the locations :-

a) Press R until both lights are on (RESET)

b) Press R to extinguish the light and leave L light alone (LOAD mode)

This resets a "pointer" in the MPU to looking at Address 00.

c) Set M/P on (to the right)

d) Press I.
This should display 7 B. If not,
this will correct the mistake:
so on. 30 and 00 should follow with each I.

7 5] 4]

The program, for which 7B, 7A, 30 and 00 are the OP CODES, will have the following

press 7B with the AM key pressed -
press L again. This should display 7 A and
The Memory Map thus contains

00 : (i i

effects. 7B sets the "Q" Flag to a "1" (described later) and pin 4 of the MPU will then
show + 5 volts. This is connected to a transistor on the EDUKIT and then to a pin on
the PCB. Another pin, nearby, completes the circuit through an LED. If the two "Q" pins

are bridged by a conductor, when the Q flag is set to a "1", the LED lights up. Thus,
when the program is run, as described later, 7B is fetched and executed by the MPU,
wheih lights the LED.

Then 7A is fetched. This is the code for an instruction to reset the Q flag to zero.
The LED goes out again very quickly. 30 is an instruction to tell the computer to Jump
somewhere else for the next instruction - 00 tells it where to Jump. I.e. 30 00 is a two-
byte instruction to tell the computer to jump back to address 00 and fetch and execute the
7B. This is fetched again and the LED lights again. Then 7 A turns it out again, and
30 00 Jumps back to repeat the "LOOP", as it is termed, over and over again. The LED
switches on and off many times a second, and should glow faintly, as far as the Human
eye is concerned.

Now switch the L and R lights on, thus resetting the machine to 00. When L is
pressed to switch the L light out, the R light will remain on. This puts the EDUKIT
into RUN mode and the program is executed from 00 onwards. If you have a small loud-
speaker handy, remove the bridge between the pins and connect the loudspeaker to the pins.
The current flowing on and off through the LED is thus forced to pass through the loud-
speaker. These cycles occur too fast for the Human ear to perceive as separate sounds
and it merges them together into a continuous "musical" note.

The pitch, or frequency of the note, is determined by the speed with which the
program runs - i.e. how fast the MPU can fetch and execute. This, in turn, depends upon
the frequency of the "clock" from which all instruction-timing comes. The clock
frequency depends upon power supply voltage and a fresh battery or stabilised power supply
will give a higher note than an old battery.

The pitch of the note may be lowered by programming as follows. This uses the
"NO OPERATION" instruction or "NOP". It has the OP-Code C4. If placed in a program,
it is fetched and executed, but literally causes nothing to happen. Howver, it takes
time to fetch and "execute" and hence can be used to "waste" time. If the program:
7B C4 7A C4 30 00 is loaded and run, a slightly lower note is produced. The program sets

the Q flag on, leaves it on while C& is executed, then resets Q again and wastes some
time before returning to set Q again.
If twenty or thirty C4's are put after 7B and 7A, the speed of operation is slow
enough to allow the observation of the Q light flickering on and off - try it !
The machine can be made to "PAUSE" by pressing R to turn both LED's off.
state is frozen and pressing R, again, causes the program to continue running.

The machine's

SUMMARY Vi

a) Programs are sequences of OP CODES stored, normally, from 00 onwards. The MPU
interprets the OP CODE as an instruction when it is fetched.

b) There are four "Command" buttons and one toggle switch.
switched to M/P when viewing data loaded into memory locations.

c) As R and L are pressed, four Commands are given, depending upon the state of
the LED lights.

The toggle switch is

Bothdn . .. vo b e blalan s o'n v s RESET ‘Dack ‘to DO
R on alone. esessasseaa...2Running a program from 00
L on alone. tesssesssssesLoads information from 00
Both of f .. sssssssesaaesss.Operations frozen.
The "IN" key is used to step to the next location during loading (M/P off) or
viewing (M/P on) of memory contents.
"Am"is used to amend the current memory location during loading or viewing,

.Qu Fetehing and executing takes time,and time may be wasted without affecting the
machine's state by using C4 - the OP CODE for NOP or NO OPERATION.

mvah note may be produced through a loudspeaker by operating the Q Flag many times
a second.

'-4@#%& =

CHAPTER 4

MACHINE CODE PROGRAMMING iy

The Ideas introduced in this chapter are entirely dependent upon an understanding
of the previous material in this manual.

In the last chapter, you were shown how to load, run and check a program on the
EDUKIT. In this chapter, the set of instructions available for inclusion in a program
is introduced. For the purpose of programming, the MPU is not considered electronically
in any way. Instead, it is regarded as a machine capable of manipulating memory locations.
There are two types of memory location - one 6f which, Addressable Memory, has already
been introduced. The block diagram of the EDUKIT contains a block labelled "memory" -
this is where Addressable Memory resides and is physically provided by the "2111" IC's on
the PCB. The other type of memory contained in a microcomputer is not addressable by
Hex address codes and, in fact, resides within the MPU itself. These locations are
called "REGISTERS" and are so important that each has a separate name as opposed to a
Hex address. In addition, many of them have very specific functions and all have
special OP Codes associated with their use.

There are over forty Registers for use during a program - to store intermediate
results etc.

All MPU operations involve at least one of these registers, and it is fair to say
that all an MPU does is to "shuffle" register contents around and control the Bus lines.
The MPU knows nothing of the various IC's making up the rest of the microcomputer - the
"outside world" exists only insofar as it accepts register contents placed on Bus lines
and provides Bus-contents to be stored in registers at the appropriate time.

The set of registers provided on the EDUKIT is decided by the manufacturers of the
MPU - the RCA COSMAC 1802y to give its full name. The set of forty registers is given in
the following two tables with name, number of bits stored and purpose.

High Order Low Order
8 - bits 8 - bits
R(0).1 R(0).0 Sixteen 16 — Bit General
Bil)u.1 R(1).0 Purpose Registers - each
R(2).1 R(2).0 split into two bytes -
i T a HIGH order and a LOW
! " order byte.
n "
R(F).1 R(F).0
Name Bits Purpose
D 8 Data register (Accumulator)
DF 1 Data Flag (ALU carry)
R 4 Pointer to one of General Purpose
Registers.
P 4 Points to program Counter
X 4 Points to Data Pointer
N 4 Holds low order instruction digit
I 4 Holds high order instruction digit
Q 1 Q flag

(there are actually two more registers labelled "IE" and "T" which are not discussed in
this chapter).

The 32 general purpose 8-bit registers are not labelled from 1 - 32; instead, they
are ganged together in pairs - one called the "High Order byte" labelled with a "1" and
one "Low Order byte" labelled with "0".

=07 -
any R-register) has 16 bits, whereasaddresses, so far,
have always been 8 bits long. This is because only 256 locations are available as
256 = 28, The MPU itself is capable of addressing &5, 536 locations, in fact, or 216 -
which requires 16 bits. However, in order to simplify matters, the EDUKIT's electronics
ignores the upper (or High Order) byte of this 16-bit addressing capability and uses Just
the Low Order byte. The result is that when an R-register is used for addressing (e.q.
when used as the PC) only the Low Order half is significant. Thus, when we say that R(D)
is the PC, we will mean that R(0).0 is used. In referring to addresses, we should really

use 4 Hex digits for the 16-bits. However, the upper 8 bits are redundant and hence we
shall stick to two Hex digits as usual.

Note that R(0) (and indeed,

The next most important register is the 8-bit D-register. This is a typical computer
Accumulator and is best described by reference to the Human brain, Try multiplying 3
by 651 with your eyes closed. You will find yourself using your own "Accumulator” of'ten
referred to as the "Mind's Eye". As you perform the calculation, intermediate Tesults
are stored in yourown . register. The situation is very similar in an MPU and many of
the operations which your programs will perform will go via the D-register. A good
example of the process is provided by Addition. This is described below, along with some
other instructions to complete the definition of the Register Set, and introduce some
important example-programs

ADDITION

njmuwmnHqumnHHUmQWSm process of adding in Hex, it will be assumed,here, t hat
this is fully understood.

The op-code used for the Addition instruction depends upon the type of addition and
where the two numbers to be added are stored. The "ADD IMMEDIATE" instruction (with
short form, or MNEMONIC, ADI) is a 2 - byte instruction, just as the JUMP instruction (30)
must be followed by a second byte to give an address to JUMP ol

The R-registers are thus 16-bit registers where each 8-bit half may be "contacted"

separately. R(A).1, for instance, is the high order byte of register number A (Hex for
ten, remember).

In the last chapter, a small program to set and reset the @ light was introduced.
The Q LED is connected (via a transistor) to a pin on the MPU itself. This pin cornects
internally to a 1-bit register called the Q flag (see the above tables). The word "flag"
is often used to denote a 1-bit register. A single-bit memory device is sometimes re-
ferred to, also, as a FLIP-FLOP. The Q flip-flop may be read by the MPU and some action
taken, depending upon whether it is set or reset - this is described later.

During the execution of a program, it is essential for the MPU to know from where the
next instruction is to be fetched. A special register called the PROGRAM COUNTER (PC)
is used by the MPU to store the address of the next instruction. Thus, in program :
7B 7A 30 00, which sets and resets the Q flag, execution begins at 7B (stored in address 00),

proceeds to 7A (stored in 01),then to 30 00, which tells the MPU to go back to 7B in
address 00 and begin again.

During this process, the PC starts at 00, increments to 01, then to 02 and 03 and
back to 00. To make the MPU execute g program, all that is needed is tg set the PC to

the address of the first instruction in that program and the MPU carries on from there.
There are instructions devoted to changing the PC at will.

The Program Counter is one of the R-registers, and the P-Register
tells the MPU which R-register it must use for the PC.
contains 0101, which is Hex "5", then R(5) is the PC. Ve
and thus R(0) is the PC - this is always true,

(see the table)

P is a 4-bit register. “If ik

Ty often, P contains (Hex) 13

in fact, just after RESET (R and L lights on).

ADI needs 2 bytes, This instruction simply takes the
second byte and adds it tg the contents of the D register, leaving the result in D. Thus,
if D contains 2¢ (always in Hex) the instruction FC 30 produces the result 27 + 30 = 57 ip D.
If you look in the "Arithmetic Operations" section of Appendix ITI, you will see the ADI
instruction described briefly. In the description, you will notice the notation M(R(P)) +
D= DF,DsR(P) + 1 to briefly define the operation.

- 18 -

R(P) is the general purpose register being used as the Mﬂouwms nﬂﬂ:#mm:%ﬁmmmmmsmwﬂwxwwvv
tion addressed by the 0 en y
means the contents of the memory loca r A sl L G R
i tored by R(P), is set to point a
thelf L iR R Tty PP = M(R(P)) + D to be executed. The arrow
Thus M(R(P)) = 30 and hence FC 30 causes M(F R . oy
i implig 1t is stored in DF and D. DF is the g ;
which follows implies that the resu : v i i W e v o
i table) which stores the final "carry" (only : y) if
o awmwwwww the Program Counter must be incremented to point to nrm cmup::u:mamw.wrw
MMHm M:mnncnwwo: and hence R(P) + 1 appears. In this sw:mmwm any _um%n DMQNMwamcpr::acmmm
i ther additions. oa - 3
ay be added and the carry retained for fur 5 0 : U
mmmﬂmww ﬂmﬂﬁ & FB24, first the FF and 24 are added to give 23 in D and 1 in mﬂlﬁw@m. FF +
24 = 123), and then 12 + FB + Data Flag is performed z:wo:.mﬂcmwm 12+ FB + 1 = .
ﬂjww Hmm<mm OE in D and DF = 1. Thus 23 is the least significant Umww of the m:mimm
and 10E is the most significant. It was necessary to "add with carry" on the secon
maapﬂ%mmwm are two instructions in Appendix III zrwnr.mwpnz this mxum nmaNanwpmnmnr 5
You will notice, therefore, that there are four addition instructions..
ith "carry" and two with. .) !)
L oﬂWm Mwwﬁwwmsom between ADD and ADI, in the Arithmetic mumnWMMQMm mMMWWMJHMMchanoz
i is i D is found. e Immedia
dix III, is in where the byte to be mnamﬂ to 5
wmmmumwwnnpcmmm the data byte to be added in its second byte, as mqumwjma mUOMwmm If you
look at ADD you will see that the definition is : 3Amﬁxvu+UIVDﬂ, D. .Mjww +smmw "
that the byte to be added to D is found in M(R(X)). m is m”onrmm NMUM:mwmmwm H:mnucowwam
i i se
ich is used to point to one of the R - registers. X may be
ﬂMMM "Control Instructions" in Appendix III). In w:ummzmﬂ.nwwm UN@MjwaWMmMmMManmVG
i tion and the address o at locati
e D Hnnm ADD Instruction is executed. To set
N is a Hex digit). X is then set to N m.m: nstri : :
mzmwam, >mnm3awx IIT shows that the op-code EN is used, this is a 1-byte instruction
i hex digit to be loaded into X. § ;
srmwmzu MMmMWWmuMHOGﬁMBm of the above can be given before a few more instructions are
introduced. ¥
E _OTHER INSTRUCTIO : 2 : .
8 Mwﬁoum continuing, glance through the sections Hﬂ:ﬂumm:amx HHM.amMOW”M mwnmauwaouw
> i i i tions, Arithmetic Operation :
Reference, Register Operations, Logic Opera : i i : o dbual
i i tructions come in an "Immediate
Instructions. Notice that several of nrmmm.pzm] -
i i tored in the secend byte. so,
the instruction has two bytes, with the data s :
MMMU Mwwmwm instructions in these sections rely on the notations M(R(X)), zthZNVHm:a
M(R(P)). M(R(X)) has been explained - it depends upon X pointing to an R-registe
ini address. q
no:wmﬂnwnmmnswjmwwcnwwa: byte is fetched by the MPU using n:m.maaummm in w:m wnm:w:mn
byte is stored in two halves - one in the I register mqa one in N. Thus, wl mm wm L
op-code E5 is fetched, E is stored in I & 5 is stored in n.ﬁ M:Mm&xﬁzm is WMn Hmmwmmom
i -bi f the instruction just fetched. ee, t 5
pointed to by the Low Order 4 Upwm o - o o g ol peg
i tion at the beginning of the Register Operation: :
wwm:mnmuwmwwwwmnjmm and N mmwmﬁa 3, this would be used to tell the MPU to increment
b g tion to be fetched during a
i imply the Contents of the next memory location to : T
To mM%mAvwwcwmzwmﬁmvw. M(R(N)) and M(R(P)) are contents of address locations ncw:wwa to
n mlﬁmmpmnmmm. The particular R-register implied depends upon the value Mw xwﬂ.v i
nw isters respectively. This is called INDIRECT >DomemHzn.. xmw:mw than Hnmnv y w g
wrm MPU to fetch some data from a specific memory «cnmwymz. it is given the number o
i hich contains the address of the data instead. i ;
nmmwwwmmcz:““Uon are to be added, D must first be set to one of them. This anganmm
a LOAD instruction - see "Memory Reference" Instructions. The final answer chw mm .
accessible to the user and thus a STORE instruction is Wmmanno .mwoumrw”mmmomw_ﬂwnw mww:
7 location. This may be read by wvm user by stepping throu I
wmmmwnmrMMBMM< muwwn:mnw<mw<. displayed automatically on the digital display using
’
another instruction.
LOAD

i i i ion wi ic LDI and op-code F8 which
b diate" is a two byte instruction with mnemonic
mwavarwwma“aﬁmmummnosu byte into D. Thus F8 31 sets D to 31. Hm.wrm.u<mm to Uw Hmwuwa
is somewhere else in memory, then the address of this byte's location is staored in
(for some N) and LDN instruction used instead. If a number of bytes are stored con-

secutively in a table, and these bytes are to be mewmm mﬁa.cwmm nmﬂmwwmmw M“MM:MMmrpmwsm.

i n
i teful to have to increment the contents of R(N) to point to tf _
M”nzMNmmrM>o ADVANCE (LDA) instruction is used,which automatically increments R(N)'s conten

In addition, X, instead of N, may be used to paint to the appropriate R-register ~ 19 -
(R(X)) and then LDX or LDXA is used with effects as shown in the table.
STORE

There are only two STORE instructions available - one via N, and one via X with an
automatic decrement of R(X)'s contents.

In order to set R(N) to a given value, the GET and PUT instructions in the "Register
Operations" sections must be used. R(N).1 and R(N).0 are set separately and all such
setting is performed through Dji.e., to set R(5).1 to 3F, it is necessary to LOAD D with
3F - perhaps using FB 3F - and then PUT HIGH R(5), with op-code B5 (see table of op-codes).
Thus setting R(5).1 to 3F is effectively a 3-byte instruction : F8 3F B5, though "officially"
it is a two byte instruction followed by a one byte instruction.

DISPLAY
To display a byte on the digital display, an OUTPUT instruction must be executed - vu
see the INPUT-OUTPUT BYTE TRANSFER section in Appendix III. These instructions transfer
bytes directly to and from the DATA BUS.
There are three N lines : N2, N1, NO which come out to pins on the MPU. When v
Output Instruction 61 (OUT 1) is executed, the N lines take up the pattern:
N2 N1 NO
0 o' 1

Some external electronics is meant to recognise this pattern and route the Data
Bus Contents to the appropriate external device. In the EDUKIT, OUT 4 is used to "contact"
the digital display. If 64 is executed the n-lines take up the pattern:

N2 N1 NO

1 0 0

which is the binary for 4. Some electronic logic recognises this and activates the digital
display which then takes the Data Bus Contents (from location pointed to by R(X)) and
converts this to a pair of Hex digits for the operator to read. This is extremely useful
for displaying the results of a program.
IDLE

Finally, before considering some examples, it is helpful to know how to end a program.
The Idle instruction "IDL" (see Control Instructions) tells the Computer to stop execution
- its op-code is 00. This condition is maintained until the machine is RESET (or
electronically interrupted in a mannmer to be described later).
EXAMPLES

Now we can apply some of the theory described in this chapter. It is assumed
that you have read and assimilated Chapter III on using the EDUKIT, and can Load & Run
programs, inspect memory locations and use the Amend key .

A constant format for writing down programs will be maintained throughout, for
consistency, with addresses, op codes, mnemonics and comments included as below.
T0 DISPLAY THE CONTENTS OF A MEMORY LOCATION

Start by loading any byte (3F will be used below) into any location (08 is used here).
To do this, RESET (both lights on), press R to leave the LDAD light on and press the In
key NINE times (i.e. step through locations oo, o1, o2, 03, 04, 05, 06, 07, 08).

Press the "Am" key, +this will ammend Mﬁ
the contents of 08 to 3F.
The program to display the contents of 08 is as follows:
Address Op-Code Mnemonic Lomments %&
00 E5 SEX 5 Set X o5
01 F8 08 LDI 08 Load D with 08
03 A5 PLD 5 R(5). 0 set to 08
04 64 ouT 4 Display M(R(5))
ey) 0o IDL End.

To load this program, only the op-code Column is loaded. I.e., Reset the machine and
load E5, FB, 08 etc. Then Reset and run the program. The MPU fetches E5 and stores E
in register I, 5 in register N and sets register X equal to 5. Then the D-register is
loaded with 08 and this stored in R(5).0 for use as an address.

Only the lower 8 bits of an address are used by the EDUKIT, therefore R(5).1 is left
untouched. Finally, the OUT instruction uses X = 5 to choose R(5) to address the memor y
location 08. Here the byte to be displayed is held, and 3F should have appeared - the
program then stops, leaving 3F on display.

)
. A
A 40\

The above format for writing programs down is almost self-explanatory. Notice L
that the Address column contains the address of the first byte in each row, and thus ES5
is stored in 00, F8 in 01, 08 in 02, A5 in 03 etc.
ADDITION OF TWO NUMBERS
This program uses a few more instructions and is used to add any two numbers stored
in memory locations 02 and 03. The answer comes up on the display, and is stored in locatior

03.
00 30 04 BR 04 Branch into program
02 Xy - - Two bytes to be added
04 F8 02 AS LDI02 & PLOS Set R(5).0 to DU;
07 faidn Load via R(5) and advance
08 ES” X set to 5
09 Fa Add D to M(R(X)) e
DA 73 Store D atM(R(X))& decrement R(X)’
08 60 Increment R(X) back again
oc 64 Display M(R(X))
oD 00 End

Before reading the explanation of this program, type it in with two simple numbers
for x and y. Try 12 and 34 to give 46 and check that the answer appears. After loading
the program, it will only work with M/P in the off condition. This is necessary since
otherwise the memory is protected against being overwritten, and the STORE instruction,
in location OA above, cannot perform its task. You should check your program through
before running it as typing errors are easy to miss.

While writing or explaining a program, a "dry run" table is most beneficial to its
understanding. The registers and locations affected by the program are written in a
table and their contents entered in columns as the program is "mentally" or "dry" run.

row address D R(5).0 X 02 03
04 02 02 £ 12 34
07 12 03 - 12 34 Refer to this table
09 46 03 5 1574 34 for the following
0A 46 02 5 12 46 explanation,
0B 46 03] 12 46

This table holds one complete "dry run" of the above program. At address 00, the
30 instruction followed by 04 tells the MPU (via the PC) to Jump over the data in 02
and 03 and execute from 04 onwards. It is essential that 00 contains an instruction
and not data, but it is useful to have small amounts of data near to 00 where they are
easily accessible by the user.

Location 04 contains F8 followed by 02 and AS. This loads 02 into D, and then
02 (from D) into R(5).0. The state of the memory locations and registers after this row
of instructigns is written in the above table, along with the address of the first
byte in that row. X's contents are indeterminate at this point. Then 07's instruction
is fetched and executed - this causes D to be loaded from the address 02 - pointed to
by R(5).0.

In addition, R(5).0 is advanced to 03 to point to the next piece of data. 08's
instruction just sets X to 5 and this is included in the next lire of the dry run table.
Then F4 is executed which takes X's value and uses R(X) to find an address (03) whose
contents (34) are added to D. R(X) is still pointing to 03, and this is used in the
next instruction, 73, to store the answer (in D) in memory. This instruction decrements
R(X) at the same time. Note that storing D does not change its contents - D is Just
copied into memory.

- R(X) is then incremented back to 03 and the number stored at this address is the
answer. This is then displayed using 64, and the program ends with an IDL instruction.
If you follow the dry run table and program at the same time, a little effort will make
the process clear and your knowledge and understanding of computer programming will be
greatly enhanced.

After running the program, set M/P on and examine the program to see that location
02 still contains 12, and 03 contains 46. Reset and set M/P off again and Run the
program without changing anything - can you explain why the display contains 587
Before resetting & running again, check that you can predict the next number.

The problem comes if x and y generate a "carry". The DF register would be set but not
displayed above. The Q light can be used to display its value. To achieve this, a

"Conditional Short Branch" instruction is introduced.

After the ADD instruction is executed in lacation 09, the Q light is to be lit if ~ = -
DF is set. If we just insert a SEQ (set Q) instruction after F4, the Q light will always
be set whether DF is 1 or O.

Instead, a further instruction is inserted, which skips over the SEQ instruction
if DF is zero, thereby leaving Q at 0 if DF is at O, and 1 otherwise.

The BNF or "Short Branch if DF =0",in the "Short Branch' section of Appendix IIT,
is appropriate. Short Branch instructions are two-byte instructions whose second byte
provides an address to branch to.

30 has been used before, and is an unconditional branch.
to the indicated address if DF = 0. The program may nowbe written

BNF, however, only branches
(slightly condensed) as :

00 30)4 — Lo m?

02 x 20 : . L !

04 F8 02) AS 5

07 45 | (7 _ :
08 £ 376Vl Al ;

09 ; { .
0A me\‘ REQ Reset Q to zero i
ac 1S BNF 8F \ | branch if "carry" = 0

oD 7B i i 'SEQ' set O if "carry" = 1 i
0F : . STXD

Dﬂ -» T £ ;

10 ; r 5 ; L

ik ao

To run this program, the Q pins (next to the Q 1ight) must be bridged by an electrical
conductor - also M/P must be off again.

Load the program and try some numbers in x and y.
the result is 46 with the Q light off indicating no carry. Try F3 and 42 - the result
should be 135. The display shows 35 and the 1 appears on the light. Try resetting
and running again. You can add multidigit Hex numbers by adding them in pairs and carry ing
from pair to pair - try using this, along with a pencil and paper, for the excercises
in Chapter 2.

The program works as before up to the wpddition" in location 09. Q is then reset
and the Data Flag examined for a "carry". If DF = 0, the branch occurs and SEQ is not
executed - the Q light remains off. If a carry has occurred, the branch does not take
place and SEQ turns the Q light on to indicate this condition.

BRANCH AND SKIP INSTRUCTIONS

The 1802 Microprocesser is quite rich in branches as can be seen from Appendix III.
The Long Branch group will not be considered here as these 3 —byte instructions contain
a 16— bit address which the EDUKIT is not set up to recognise.

Branches are used for decision processes as illustrated in the previous section.
They simply change the order of execution of a set of instructions stored in consecutive
memory locations. There is a variety of conditions upon which a branch can occur as can
be seen from the instruction table. BZ branches if D is zero, BNZ if D not zero etc.
All the arithmetic branches refer to the state of D. In addition, the state of the
Q flag may cause a branch to occur. An example of the use of the Arithmetic Conditional
Branches is in producing a time delay. The following program illustrates this idea.

If you choose 12 and 34 again

0o 78 SEQ Q light on

01 F8 00 LDI 00 Di=0 i
03 FC 01 ADI 01 Increment D

05 3A 03 BNZ Repeat until zero 1
07 7A REQ Q light off

GO R ' o S

oc 30 00 BRA Branch back and repeat. B

Load and Run this program with the Q pins shorted together - the Q light should
switch on and off about once a second. Q is set and remains On while D, which starts
of f at zero, is incremented. Eventually, D reaches FE then FF then 00, with a "carry"
which is ignored. The "Branch if D not zero", in location 05, no longer branches back
at this point, and Q switches off - a condition which lasts during the next delay.
Finally, the program repeats by branching, unconditionally, back to the start.

There are many different ways to achieve this effect, see if you can produce some
others.

There are four pins on the 1802 called EF1, EF2, EF3 and EF 4 whose state may be read
by the MPU and a branch effected depending on their condition. These lines are perfect
for accepting switch-state information from a device which the EDUKIT is controlling.
This is taken up again later.

o >:Mm:mn mwmm oﬁ.ucaﬂ Hmijm SKIF instruction. These instructions are one-byte °~ 22
me MMMHMomwmsMwM: W+am_< %Mwumn<mm the following two bytes if the Conditions shown in
isfied. e Short Skip is the only unconditional Skip i i
; : : : - ! instructio
and is the mxﬂwuwuu: in that it skips just one byte. The following Unmcams MHH:mww t
the use of Skip to switch Q on and off repeatedly as above. A0
Mm MM ab Q light on
i Lo Start D at B0
05 3A 03 uﬁ Detay
07 cD i i
e S 0o Earia Skip over branch if Q set.
DA 7A REQ
. 08 30 01 BR 01
This program sets Q at the start, delays, and then asks whether Q is set. The first

WMEM Mnmcaﬂ. u is set and the Skip is performed causing Q to reset. The process is
:oﬂ mmwﬁ spmwpnm out SEQ, and thus next time LSQ is encountered, is reset and th wmx.
performed - the program restarts at the beginning and sets Q again. This wm<mm o

just one byte of program over the last i
BN oot ver mxnmwwwmmﬁmWJDQ. The following program is even shorter

0 FC 01

02 3A 00 W1 00 Qg

05 i e RA TS

07 i e 2 o ifple @
g A

07 7A REQ hort Skip

A8 30 00 e

qrumnocnuzm0n0<wammmz.ph i
SRR eanova illustration of the use of Short (unconditional) Skip.

As with addition, the process of Hex subtraction is

best seen by analogy with

Decimal. Consider 566 — 389 in Decimal :
hundreds tens units
5 lg ! i
i ww\ H@\ M 10 is anﬁczma from the 10%and 16 - 9 = 7.
The 80 is then incremented by 10 to make up
1k 7 7 :

for the borrow, and becomes 90.

100 is borrowed from the 100%to conv
C i ert the 60 to 160 and 16 - 9 = i
borrow is added back turning 3 to 4. 5-4 = 1 and no further borrow is Mmmawmwquij

389 — 566 was performed, th i
i i mmuu » there would be a final borrow. To see how this works 389 — 566

1000's

; mam_m tens units
\m\ = 8 9 The subtraction goes as normal, but 3 - 5
— 5 6 6 needs a borrow from the 1000's column.
—jobo + 8
2 3 Then 13 - 5 = 8, but this leaves 0 —1000 at

the left hand side.

The answer is thus : - - i i
UL b g 1000 + 823 = -177 which is correct.
The final result is found b i
! . y subtracting 823 from the next high
%Mmmmuwommmmmsa.maaw:m a "minus" sign. 823 is called the "TEN'S nmzmmmmmuwm MM mwm
moaopmimawmwwm is W mpsnﬁmw method ow converting 823 into the final m:mzmw called 9's
Pt mwum:wm ﬁnmn ammpnzom 823 is subtracted from 9, and 1 added to the final total
attached as before. I.e. 823-» = ivi f
as the m:wsmum A similar process is used below. i o 4 o ¢ 1
Subtraction in Hex proceeds as follows:

823 is an important

16's units 10 (Hex) must
be borrowed from theléy
.] m elé
9 A inte 1A, and then 1A-C = E. i Py
7 The borrowed 10 is then qi
i ” - s e given back to the 6,
7 E

If 6C - 9A is performed instead, it is again easier to write: o T
256's 16's units
0 3 e C-A=2and 16 - 9 =D, with the borrow

left at the end to give :
-100 + D2 as the final answer.

-l 9 A

-100 + D 2

A Hex subtraction still has to be done to finish! However, as for Decimal, an easier
process exists. D2 is called the "Sixteen's Complement" or (more normally) "TWO's
COMPLEMENT" form of the answer-

To turn D2 into the final answer, it is best written in binary as : D2 = 1101 0010.

Each "1" is then turnmed into a "D" and each "Q" into a "1" - the result is 0010 1101.
"1" is added as follows:

0010 '11°' 01
+ 1
00 10 11 10

1 with the usual rules of carrying.

This becomes the final answer when a "minus" sign is attached. i.e. - 0010 1110 =
-2 which is 6C - 9A. The process of changing 1's to 0's, and vice versa, is called
COMPLEMENTATION. One of the "Logic Operations" in Appendix III may be employed to perform
this automatically. The operation is XRI with FF, this is explained in the next section.
The DF register signifies if a final borrow is needed. DF = 1 if not, and O otherwise.
Thus, DF = O signifies that the answer is in 2's Complement form, and needs XRI FF
followed by ADI 01 to give the answer.

The following program illustrates the subtraction instruction. The program is
similar to the Addition programs in the previous section.

00 ﬁmo 04 BR 04
02 % Vi data
04 F8 02 AS LDIO2 & PLOS
07 45 LDA
08 ES5 SEX 5
09 X SD M(R(X)) - D
DA 7A REQ
0B 33 OF qlmc_.. 0F Branch if DF = 1
0D 50403 BR 13 Branch down to complement
OF 73 STXD HHV and add.
10 60 IRX 2
11 64 uT 4 Disphoy
12 00 iDL End
13 FB FF »XR1 FF Complement
15 FCOOE AD1 01 Add one
17 78 SEQ Set Q light on
18 30 OF "BR OF Return to display
Here, y - x is calculated, and, if negative, automatically Complemented etc.,

and the Q-light lit to indicate that the result is negative. To understand this program,
the addition programs in the previous sections must be assimilated. Here ADD is replaced
by SD in location 09. If the subtraction has a positive answer, then DF = 1 and BDF

in location OB is executed causing the contents of 03, where the answer resides, to be
displayed. If the subtraction is negative, the program branches down to a routine,
starting at location 13, which changes 1's to 0's & vice-versa, then adds one - thus
turning the 2's complement form into the final (negative) result. The Q light is lit to
signify that the displayed result is negative.

As for addition, multidigit numbers may be subtracted in pairs with the Borrow
transferred automatically by "subtract with borrow" instructions - this is left for your
experimentation and more advanced treatis es. Multiplication, Division and all the
other arithmetic processes may be synthesised from Addition and Subtraction, and the
reader should obtain a book incorporating Binary Arithmetic if this is of interest.

LUGLIL DPERATIONS S Pl
The basic logic operations provided on the 1807 are : AND, OR, EXCLUSIVE OR and SHIFT.

These are operations performed on the BITs themselves. The following defines AND:

I AND*1 = 1
1ANDD =0
0 AND: 1 =20
OAND O =0

A "
Thus, the answer to the AND operation Hm_p,oaww if both operands are' 1.

OR AND EXCLUSIVE OR (XOR) are defined by:
1

18,1 LR L § THXOR 1 e=:0
I°DR O =+ 1 X0R 0 =1
DOR1 =1 W XOR L=
DREBR0C =iEB 0 XORO =0
OR only gives the answer zero when both tperands are zero - i.e. if one or other
of the operands is "1" then the answer is "1". (XOR) is the same as OR except that

1 XORs 3=10.
These 3 operations apply to Hex numbers by writing them in binary and applying the
above rules to them bit by bit. Thus 3D OR 23 goes as follows: 3D = 00 11 11 01,
23 = 00 10- 00 11
001 111 00

OR 00 10 00 11

and similarly for the other operations -
check 3D XOR 23 =1E and that 3D AND 23 = 2].

= 0011 1%4). -="3F

XOR with FF is a useful way to Complement a number - that is change 1's to zerao's
and vice versa. Check that the Complement of 23 is DC using 23 XOR FF, as an ex ercise.
You should then write some small programs on the lines of the Addition and Subtraction
programs above to work out the results of "OR", "AND" etc. on x and y.

The SHIFT operation allows the byte stored in D to be examined bit by bit through
the DF register. D is best considered as follows for this operation:

8 BITS
0: (w17 | eite | sus | Bura | sus | suiz | sint | sr70 |
MSB LsB

D has B8 bits, Bit 0 to Bit 7 from right to left. Bit 7 is called the Most Significant
Bit (MSB) and Bit O is the Least (LsB).

SHIFT RIGHT WITH CARRY (SHRC) performs the following:
{oF ¢

e kL

All the bits shift to the right one place, with DF shifting into MSB and LSB shifting
into DF. If Bit 3 is to be examined, and a Branch executed upon its being 'a "1", say,
the shift is performed four times. This places the required bit in DF and "Branch if OF = 1"
can be executed. This is of utmost importance for Control of external devices where the
contents of D could contain the states of 8 switches and sensors. Each BIT can be treated
separately by shifting it into DF and making a decision depending upon DF's state.

SHIFT LEFT With CARRY is similar but the other way around.

SHIFT LEFT (SHL) AND SHIFT RIGHT (SHR) are different only in that as the bits of D
are shifted out, zeros are shifted in to fill the spaces:

O st Lidlab ol T T T

This is useful in separating the two 4-bit halves of a byte and storing them in separate
locations. For instance, if D = 5C, we might want location 03 to store 05 and location

02 to store OC - and similarly for any other D=—contents. See if you can write a program
to do this using Shifts. The clue is that if you Shift D Right 4 times, you are left

with 05. However, the C is lost - therefore you must store D first.

Another useful excercise is to display the bits in D on the Q light, one after the
other, as the digital display shows 00, 01, 02, 03, 04, 0S5, 06, 07 to indicate which BIT
1s on the Q light at any time. A delay should be inserted between each display to allow
the condition to be read.

NOTE

ﬁrmam.mnm one or two instructions left for more comprehensive books on 1802 Software.
See Appendix I . The TOM PITTMAN book gives a VETY
1802 Machine Code, the 1802 Manual, however, is more complete.

easy to read guide to

- 25 =
General Programming Techniques
Tn order to write & computer program - to perform some activity, a logical set of
steps must be written down to achieve the end. Sometimes, it is easier to write this
stage on the form of a chart, For instance, suppose we wish to show 16 bytes on the
display, with a time delay between each byte. The 16 bytes must be stored somewhere
in memory then fetched and displayed one after the other. A means of terminating the
process must be decided upon, The following shows a "high level" chart of this process.
Here, some standard "flow-chart" symbols are used. €__) is used for
% start and end; [_J is used for statements; AV is wused for decision
Fetch onel boxes.
byte and Thus , after start, a byte is fetched from the number store and
L....uv_.vu displayed for a time. Then, a decision is made as to whether all the bytes
have been displayed yet. If so, the program ends, if not, the next byte
is fetched. This process of repeating the same activity several times
is called a"loop" . Here the loop is performed 16 times. If you run a
program with a mistake in it, there is a chance that your program will
enter an infinite loop from which a RESET is necessary for escape.

This chart orders the essential parts of the program without actually
indicating how those parts are to be achieved. To help in writing the
program itself, a more detailed chart can be drawn. However, before
this is done, some details must be given. The sixteen numbers must be allotted
specific addresses. We shall choose addresses: 20, 21, . . . , 2F. In addition, R(5)
will be used to st@re the address of the current byte on display.

The detailed chart might look like the one below.(Comments are written by each box.)

X is used to point to R(5)

RG)=20]| R(5) is set up to the start of the table of numbers.

ovtpul the contenty X point to R(5) where the address of the byte to
) of the Locotlon be displayed is held. This is then output and the

D‘.E.a.nummm. rd RE) address in R(5) incremented to point to the next
and increment R(S byte to be displayed.

delay

This checks whether the contents of 2F have Jjust been displayed
- if so, R(5) will contain %0 - the address of the location
following 2F. If not, a branch to the display instruction
oceurs,

If 30 has been reached, then the program ends.,

Note that the ™ = " sign is used as an instruetion, in the above, Thus " X=5 4
means"set % to the value 5".
Even th is flowchart does not contain all the details, but it is very close.
T+ can now be"coded" - i.e. converted into machine code. Each box can be coded
easily, for instance the instruction [X=5] has op-code E5 . However, [R(5)=20
is a double instruction, as seen in a previous program. See if you can code this
flowchart before reading on. Start the program from 00 as usual, The coded result follows.

00 E5 SEX 5 Set X to 5
ol F8 20 A5 LDI20 & PLO 5 R(5)=20

ol 64 oUT 4 Display M(R(5)) and inc, R(5)
05 F8 00 FC 01 A OT This is the usual delay routine

OB 85 GLO 5 R(5).0 = D

oc B 30 XRI 30 Compare D to 30

QE JA O4 BNZ 04

10 00 1DL End

gee if you can modify this program to show the program itself from 00 to 10. e
In general, 1t is well worth while, when programming in machine code, to draw a yr
flowchart first. It enables others to understand the program, lays the logic out in
an easily modified form, and, most important, reminds you of how the program works
if yeu have left it for a week or two.
_ The following programs are samples for you to try out, modify and examine
carefully for tricks to use in your own programs.
(1) This program counts through the Hex number system to help you gain familiarity.

00 E5 SEX 5 Location 20 (poin to R)
B e atsdetoohy Blade)

ob F8 00 D=00 _The count is started at 00

06 55 PLO 5. STR4 D's contents are displayed via 20 - this
07 6l 25 OUT4 & DEC 5 increments R(5) - R(5) is then DECed,
09 F8 00 LDI 00

0B FC 01 3A OB

OF FC 01 3A OF Two delays

3) 05 5 The current contents of 20 are loaded
14 FC QL ADI QX into D and incremented.

16 30 06 BRA 06 The program then displays the new count.

Amv Programs and data do not have to start from 00. The following program allows you
to load information higher up in memory without the necessity for pressing "In"
dozens of times to reach those locations.

00 F8 04 AF R(F)=0% This program uses R(F) as the

03 DF SEP F Program Counter and sets R(0)

ol F8 XY A0 R(0)=XY to address XY then waits for
o7 00 IDL a LOAD to occur.

_ In general, when RESET is entered, followed by RUN, the Program Counter is R(0),
and is set to 00, Thus. the contents of 00 are feteched and executed. Here, the
resulting program turns R(F) into the Program Counter (set initially to O4) causing
a jump to O4. At this location, R(0) is set to some address XY, chosen by the user,
and the IDLE state is entered. In this state, the computer outputs the address
stored in R(0) - i.e. XY - and waits for a byte of data from the keyboard to store
in XY. After running this program, therefore, use the keyboard and "In" key as usual
to store information from address XY onwards. To execute a program stored from XY
onwards, store 30 XY in addresses 00 and Ol respectively.
(3) To play several musical notes through a loudspeaker, the following program uses
a Mook up" table. The bytes stored in this block of memory are fetched, cne by one ,
and used to determine the pitch of each successive note. The table of notes must end
with 00. When this is reached, the computer goes back to the beginning and starts again.
The teble starts at location 16. When you have loaded the program, experiment with
different numbers in the table until you can tie number up with pitch,

This program is a very simple example of its kind and suffers from several
drawbacks. For example, high pitch notes last a shorter time than low. Try and correct
some of the defects by writing a more sophisticated routine. The highest piteh of
note attainable depends upon the frequency of the computer's clock. This may be
increased by connecting a 1K resistor in parallel with R20.

00 F8 00 A6 R(6).0=00

03 F8 15 A5 _..vw@ .0=15

06 15 >INC R(5)

o7 05 D=M(R(5) .0)

08 32 03 L-BEQ 03 2o
OA B SEQ

OB FC 01 INC D

oD 3A OB ENE OB

OF TA ¢ RER, o

10 16 (INC R(6)

11 86 N D=R(6).0 et

12 38 07 BNE 07 3 ;
14 30 06 BRA 06 5

16 The lookup table of notes starts here.

To understand the workings of this program, you should draw a "dry run" table
and then a flowchart, You should then be able to experiment with some modifications
of your own +to effect an improvement to the design.

Final Hints

——

You should always check your program through before rmning it. Remember that as
you step through, the Am key may be used to correct any byte being displayed as it
comes up. You will also find it mnqmnﬂm%mocm to keep & note-book of all programs and
changes during their development., Even "bugs" should be written up to help in the future.

CHAPTER _ 5
HARDWARE, Control, Troubleshooting el
INTRODUCTION
0 Two areas are deccribed in this chapter. !irstly, methods of using the EDUKIT

for controling external devices, and secondly a brief description of the hardware of the
EDUKIT itself with special reference to troubleshooting.

Neither of these areas is as amenable to a short discussion from scratch as is the
Software of the last chapter. Thus, it is assumed, here, that the reader has a basic
understanding of electronic logic devices. If this is not so, Don Lancaster's excellent
"TTL Cookbook" referred to in Appendix I, will help considerably.

The 1802 User's manual (see Appendix I) is a very important supplement to this
chapter and should be used for continual reference.

1802
The 1802 is an interesting and unigue type of 8-bit MPU. Not only does it have

many specially dedicated instructions and lines for 1/0, but it has a Program Loader and
execution function built in. There is also a simple but very useful Direct Memory
Access (DMA) facility on the chip which allows an external device to Read from or Store
at the memory location pointed to by R(0). In addition, the processor is a CM0S device
and consumes very little power.

The following diagrams show the 1802's achitecture and pin-out. —~
MEMORY 1/0 COMMAND AR BI-DIRECTIONAL o
ADDRESS OR SERIAL DATA COMMAND v)vw BUS ¥

\ /

81

®) CONTROL SIGNAL NAME .\ SIGNAL NAME
LOGIC
e A H — crock 1o a0}— voo
118 Y
E.\\\\\\\ CONTROL | WAIT — 2 3917~ XTAL —
(@) CLEAR — 3 3gf— DMAIN ey
T T
INCR/ N a =18 37— DMARIT, ReQuESTS
. STATE [sci —5 |— INTERRUPT | +——
ik w [PPZEEOY Cooes 25
T e et SCO q 6 uuz.w\ MWR —
e _ SCRATCH PAD 4+—— MRD e AL | e TPA TIMING
REGISTERS |
w i = Gz BUS 7 hi g Pl —I|| PULSES
¥ BUSE — 9 32f~—
: i Buss ' Zlio 3L
RIEI1 | RIEIO umbm.m{ Bia e LA Bk
A(F)1 | RIFILO i
+— |BuUs3 2 29— MA4 MEMORY
BUS 2 “—13 28— MA3 ADDRESS
[t} 8 i
BUS | ||_ 14 27— MAZ
88IT BUS i 7/
Gz N - LBus © 15 mm..\ll MA |
drres
{ 5 vee 7 6 mu.W\! MA O
B -
1] | \rof i & | N2 __w 24— EF 1
/ ~ VNV P I/0 — N1 I8 34 / 3 1/0
[COMMANDS S/ W2t [ervim) FLAGS
B N INO 19 p—EF3 s
g Vgg —|20 21— EF4)
TOP VIEW

External Flag Lines

As explained in the previous chapter, there are Condtional Branch Instructions
which are executed depending upon the state of the "EF" lines - pin numbers : 21, B2s
and 24. These pins are brought out to pads next to the processor for convenience.

These "External Flags",as they are calledyare normally used in conjunction with an
interrupt, to identify the i terrupting device. However, for a small Control System
having a few switches or sensors which must be read and acted upon, the EF lines are ideal.
These 4 lines allow 284 - 16 different switches, with some external logic, to be scanned.
Alternatively, just four switches may be attached with no external logic at all.

Anather interesting use of thse lines would be with a 1l6-level Analogue to Digital
(A-D)} Converter. A control activity may depend upon the temperature of a room - different
actions being required for different bands of temperature. An electronic temperature
gauge would be fed through an A-D Converter giving binary patterns on 4 lines connected
to the EF lines of the EDUKIT. The program would need to decode the patterns of bits
into some action. The EF lires must be scanned continually to ensure that a change in

<At
temperature is noticed quickly, However, the program for decoding the bit patterns
into activities is rather cumbersome, and more efficient methods of achieving this effect
will be seen below. Before proceeding, some circuit suggestions are given for
use of the External Flags as described above.

L
E EFI
EFI 6 4 L~
dmmm_.ﬂuk gatkyloh =P EE2 INPUT me. EF2
Jevel’| convERTER EF3 < | eacoder
EFk N EF3
il EFL
(i i S
a)Use of EF lines in +5volks

analogue sensing. (6334 ‘Lines may bl rerbed

WA, by the EF inputs.

- EFI
EF2
EF3
EF4
. e

(c) Alternatively, the EF lines provide a very neat and simple method of reading the
state of one of four lines.
Direct Bus Access

There are some special Input/Output instructions which allow up to seven devices
to send and receive one byte of information via the Data Bus of the EDUKIT. They are the
"Input-Output Byte Transfer" group one of which has already been introduced to display
Hex digits on the EDUKIT. The N register is used to select an external device as well
as to signal the direction of the Byte to be transferred.

To transfer a byte to or from an external device, the 6N instruction (see table of
op-codes) is useds Thus I = 6 and N is some Hex digit. The value of N determines both
data direction and device selected using the MRD pin and NO, N1 and N2 pins, all brought
out to pads next to the 1802 (see component overlay).

During the instruction's execution, the bits of N appear on the above lines according
to the following diagram:

n: [BI73 [BIT2 [BIT1 | BITO |
.) v v v
: MRD N2 N1 NO
It is up to some external logic to decode four control lines to activate the
appropriate device.

MRD o1 = INPUT
“ 0 = 0UTPUT

N2 gl
N1— 3-»8 line decoder 4
NO— froate o
A A
i p
N

The different binary numbers on NO - N2 select L1 to L7. LO is selected when NO - N2
are all zero, as occurs when no I/0 instruction is being executed. Sy

WhenN is between 9 and F, Bit 3 in N is at a 1 and this appears on MRD, to signal
an Input to memory from an external device. When N is between 1 and 7, Output from
memory is implied. During Input, the X register is used to point the R(X) which contains
the memory address into which the byte is transferred. D is also loaded with the input/
_uﬁ“w simultaneously. X and R(X) must be set correctly before the transfer is effected.)
During Output, R(X) is again used to hold the byte to be transferred. In this case, tHe
contents of R(X) appear on the Bus, MRD is set to "O", the N lines set up and then R(X)
is incremented. The last operation is very convenient if several bytes, stored con-
Secutively in memory, are to be output one after the other.

7 device select lines

DATA BUS To all external devices

A1l the external devices connect to the EDUKIT's Data Bus and are activated - 29 -
when appropr iate. It is essential, therefore, for devices to be TRI-STATE if they
are to place data on the Data Bus for Input to the EDUKIT. It is important, also,
to buffer the data lines from the EDUKIT for external use. The Data Bus lines may
be picked up from some of the through-correction pins near IC7 as shown on the
component overlay in Chapter One. MODUS will be making certain expansion tothe EDUKIT
to plug in, in place of some existing IC's.

The 1802 User's Manual describes general I1/0 in great detail. Any serious use
of the EDUKIT's full control capabilities must make reference to this publication.

A Small control example

Tn order to experiment with a simple Control System, a few lights and switches

can be connected as follows, using some simple logic devices.

_ +Syolks
J*QN
A
a2 T A
No flo L 7405029
NI A 0
e s Pieut it
o T 0 w 3
EFI ! -~
EF2
EF3 i
EF& e

T

This suggested circuit does not use the Data Bus - but controls one of 4 outputs
and four inputs, directly. There is a unique machine-code instruction for each light and
switch.
Only three integrated circuit packages are required. The NO, N1
decoded to select one of four lines via a 2 to 4 decoder (74 LS 139).
When one or both N lines hold a "1", the Nor gates clock the latch (74174) to hold
the selected output and light one of the four LEDs. In this way, eight outputs may be
controlled by decoding the WRD line too. This would use the other half of the 74LS139.
To control the circuit, the 6N instruction is usedbturn any LED on and the Short
Branch Instructions used to sense and act upon the states of the switches. N2 is
left unused purely because it controls the digital display on the EDUKIT. However, the
line is perfectly free for use and increases the control potential by a factor of two.
In addition, the Q output should not be forgotten and this allows yet another factor
of two in the output capabilities. To appreciate the use of this type of control,
imagine the LED's in the above diagram to be relays turning machines on and of f, and
think of the switches @s sensors of some kind.
MAXIMUM POTENTIAL
To calculate the maximum amount of control possible, consider the following -
The three N lines allow seven different devices to send or receive one byte of information
- depending upon the state of MRD. FEach byte has eight bits and each bit could be the
state of a switch. Thus 7 x 8 = 56 switches can be monitored at once. Output is
similar - 56 relays (or equivalent devices) can be controlled. In addition, the four
EF lines can be used for very fast servicing of four input lines - these could
be used as an overiding "mode" control, best described by the example below. Finally,
everything can be simply doubled by using the @ flag to switch from one set of linesto
anot her.

lines are

Qlllwiixﬁ..:q ———— 7 device selects 1 BANK
N el oara e 6 B e Puta
N ———i .
t—— 7 device Selects
s ————— > RouTER b= 1 BANK
DATA ﬁcmW:M | ¢ 8its of Data

The above diagram shows the sort of potential possible. Suppose that the system ~ Hos
is used to mo:nuou the security of a building. There could be fourteen rooms, say,
each with eight sensors for temperature, smoke, intruder etcyand eight relays for lights,
heaters, security cameras etc. etc. Each room is called a 'device"in the block diagram
above, and the fourteen rooms are divided into two banks, each serviced for one of the
states of the Q flag. The control program continually fetches data from the building,
examines the bytes thus retrieved using, perhaps, the shift instructions to examine
each bit. At the same time (apparently) it sends data out in bytes to control the
slave units.

Overiding the entire process, is the state of the EF lines. These could be set
to tell n:..w machine the time of the day. For instance, each of four six hour periods
could be mun:mp ed, by an external clock, via EF1-4. By this means, the program controling
the building could be changed every six hours during the day. Alternatively, light
mw:ﬂmnm could feed EF1-4 to command the machine to change from day-time operation to
night.

; The problem of gathering analogue data is solved by using an A-D Converter and
using the above system to gather 8-bit data from these devices directly into the computer's
memory for analysis and action.

If you are new to Control, you are advised to use the simpler facilities of the
mc¢xmq.ﬂo learn. In many ways, it is in this area that the major advances in micro-
nogﬁcwuzm are waiting to be made, and a few lights and switches connected to the EDUKIT
will teach you more of an immediately practical nature than any number of books.

Hardware of the EDUKIT and Troubleshooting

LoGic
CoNTROL BUS [o 4
Lock
Ijo
MPW [DATA Bus (88ns) L P \
1802)
ADDRESS Bus(E8iTs) 2 RUN, LoAD,
AMEND, INPUT
LogGic

Block Diagram of the EDUKIT

.q:m block diagram shows the basic ingredients,and the circuit diagram fills in the
details for those interested in modifying the basic unit, or troubleshooting malfunctions.
The 1802 allows Loading memory and Running a program from address 00 using two Mode
Select lines CLEAR and WAIT. There are four bit patterns on two lines, and the other
wzo Hmamm are RESET and Pause. The following table gives the states for all these
unctions:

Function CLEAR WAIT
LOAD 0 0
RESET 0 i
PAUSE 1 0
RUN 1 i

When mcq is entered, from RESET, R(0) is used as the Program Counter and set to
ma. wmcmm simply suspends operation. Load is used with the Direct Memory Access (DMA)
unction of the 1802 to load memory sequentially from 00 upwards. The appropriate

state is set on CTLEAR and WAIT by the flip-flops in IC3 as the (capacitively debounced)
R & L buttons are operated.

2.3l -
To understand the DMA functions of the 1802, the state - Code outputs SCO and SC1
must be described. They give access to the type of cycle being performed, at any time,
by the Processor, according to the following table (refer to 1802 user manual).

STATE SC1 (pin 5) SC0 (pin 6)

FETCH 0
EXECUTE
DMA

INTERRUPT

== 00

AL
0
1

When the DMA IN line on the 1802 is wmrm:.woz, the processor uses (R(0) to point
to a location to which the Data Bus Contents are immediately loaded. It is up to an
external device to ensure that the correct Bus Contents are present. In addition,
5C1 goes high and R(D) is incremented to allow a series of memory locations to be
loaded. The address in R(D) is present on the Address Bus from the 1802 to ensure that
the correct locations are loaded. In the LOAD mode, the processor waits for a DMA. In
order to ensure that the DMA IN'line (controlled by the In key) does not stay low too
long, a flip-flop (1C2a) is set by the In key when a DMA is needed, and reset again
by SC1's going to "1", via IC6a. Thus each time"In"is pressed, you can watch the_
address on the Address Bus increment - for checking purposes. At the same time, MWR
pulses low to place the memory into write mode via ICéc and IC6d. Memory Protect simply
forces MWR to a permanent "1" preventing memory from being overwritten. This also puts
memory into the Read state and allows the contents of memory to appear on the Data Bus
and hence on the digital display through IC11 and IC12.

The 'Am’ key overides the "write" logic and places a zero on R/W pin of the memory
chips (IC4 and IC5) and a zero on the Enables of IC7, 11 and 12. This forces the keyboard
contents onto the Data Bus and writes it into memory, and onto the digital display
simultaneously. The current address on the Address Bus decides the location which is
changed by this process.

The keyboard contents are set up as follows.

The MPU's clock is fed via IC2b to a 7493 4-bit ripple counter which clocks
until a key is pressed. When this happens, the ripple count continues until its binary
rumber is equal to the number on the key. Pin 10 of IC13 then goes "low" disabling IC2b
and IC15 for as long as the key is pressed. This stores the contents of ICY (previous
key pressed) in four bits of ICl0, and the current key number in ICl4 and the rest of IC10.
This is present at IC7 for later transfer to memory and digital display. When the key
is allowed to return, pin 10 of IC13 returns high, clocking 1C9 to store this key number
for next time. By this means, each key-pressing enters a number in the least significant
position after shifting the previous LS digit to the most significant place. The number
thus set up is only allowed "out" when Am or In keys are pressed. "In" advances to the
next location before storing the current keyboard number, “Am’ stores at the current address.

The MPU is clocked by an R - C oscillator using the Schmitt trigger 1C6. This
is the first unit to be checked if the processer does not work.

TROUBLESHOOT ING :

When power is applied, a digital number will appear on the display. If not,
check that power is reaching IC11 and IC12 and that the DI1 and DI2 are connected
to Ground Correctly.

If the R and L lights do not turn on as R and L are pressed, check that operating
R and L affects pins 1 and 5 of IC3 respectively. A meter, or even an LED in series
with a 270 Ohm resister will suffice for these checks. Check that 1C3 is receiving
power, then check that all its pins are soldered or pushed into its socket properly.

To check any further, an oscilloscope is reasonably essential. Howver, in our
experience, between 96% and 98% of all units sent back for repairs have a dry joint, a
pin-through unsoldered or missing, a reversed diode or a solder bridge. It is, therefore,
well worth while checking again to be sure!

The incidence of "duff" chips is lower than 0.5% and is far outweighed by assembly
errors. Unless you have reversed or overloaded the power supplies at some time, the
integrated circuits must be suspected last of all. .

A Lol

If a scope is available, check that the clock is oseéillati MR

: ; ng and that MWR 1

for a m:oww time when "In" is pressed in the Load mode with M/P off. Then mzﬁmmommm MM:
mode - this may make nqm Address and Data Buses oscillate. If not, press the L light on
and of f with x.o: - wrpm usually has a noticeable effect on Address and Data Bus if
the processer is working. If not, check power and TLEAR and WAIT.

If the keyboard circuit is not displaying keys pressed when "Am" is

f ressed, check

that nwmm 1 and 19 of 1C7 go low when "Am" is pressed and when "In" is tuwmmmq Hm the
LOAD mode.

Interrupts

when the Processor's INTERRUPT pin is brought low, execution of the current
program ceases, and the MPU saves the current X Register and Program Counter. The
next instruction is fetched from the address stored in R(1), which must,therefore, be
initialised before any interrupts are met. The processor's response to interrupts may be
prevented by the use of a machine code instruction. In order to use interrupts
correctly, it is essential to refer to the 1802 User's Manual.

Interrupt techniques are used primarily to allow external devices to
signal that they need servicing by the computer.

Expansion

The memory of the EDUKIT is by no means restricted to the small amount of
on-board memory provided. It is perfectly possible to expand the computer up to
64K by bringing the TPA signal out to an external logic board. The extra sixteen
Bits of Address information are multiplexed onto Address Bus, and TPA signals that
the upper 16 Bits have just been sent and the lower Bits are about to be present.
the 1802 User's Manual makes it clear how to use this/signal.

Memor

Again,

1) oo _Po[RE 0T oof FE
hn Dwﬂox | m*
Seve |/
YUxD
|Rx
OYUT &

_\.w lp| g

wumﬁ { l v (574

oY €t Gh) iy

.

N——\n

/

(a)

(b)

(c)

(d)

(e)

(f)

- g

APPENDIX I

FALESL L LA

BIBL IOGRAPHY

User Manual for The CDP1802 COSMAC Microprocessor,)u\
published v«.;mmp.

A Short Course In Programming, By TOM PITTMAN,

published by Nétronics R and D Ltd. .
This book is written for afhother system which uses the 1802, vcn it
describes the machine code very fully for any 1802 based machine.

TTL COOKBOOK, By DON LANCASTER,
published by SAMS

The O0SBORNE books are very good for an introduction to anuanosﬁ:wwom.
These are available from any good bookseller advertising in the magazines
suggested below.

Monthly publications such as:

ractical Computing

Practical Electronics

Comput img ﬁonnr

lectronics Today International
ersonal Computer World

Etc. ete.

DON LANCASTER has some other books in the "COOKBOOK" series which
are useful from a Hardware angle.

—_ B

& ™

APPENDIX II

SOLDERING ity

In order to form a good solder joint, a hot clean iron, clean work and a good-
quality flux-cored solder is required. During soldering, two pieces of metal are
heated up to a temperature sufficiently high to melt a third metal (solder). This
runs into the joint, cools, solidifies and joins the two pieces of metal toqgether.

The probem is that the metal surfaces to be joined must remain clean during the process
or the solder does not join to the metal itself. When copper, and most metals, are
heated , a layer of oxide forms which makes soldering difficult. It is this layer
which the special resin-based flux in the solder is supposed to prevent.

If yoursoldering iron has never been used before, make sure you "tin" it by
applying solder to the bit while it heats up for the first time. This will clean the
pit and prevent its iron coating from oxidising. The iron bit should never be filed,
cleaning should be done while hot, with a wet sponge or piece of cardboard followed by
a coating of solder.

Practice joining two pieces of wire together. Remove the plastic insulation and
tin each piece of wire by holding the soldering iron to each piece separately, and
running solder into the iron/wire interface. Then twist the wires together and apply
the iron along with some solder. The whole joint should run cleanly with solder. In
general, applying solder while the iron is held against the work, greatly assists heat
transfer as well as bringing flux onto the surfaces. Next, practice using minimum
solder possible to effect a good strong joint - this is very important when assembling
electronic boards to prevent solder bridging to nearby tracks.

Your ﬁwﬁmn task will be to solder pins through the board.

bit
The pins should be handled as little as possible
Lasd as finger grease impedes the process.

The pins and PCB are already tinned during manufacture, and all you have to do is
shake any excess solder from the iron, tin it, and quickly apply it to the corner
between pin and PCB with solder held in place to run into the joint. The process must

be completed swiftly or the flux vaporises and the work begins to oxidise making the

soldering "dry". This is said to cause "dry" joints which will normally be intermittent
at best. Again, practice using as little solder as possible on the joint.
The following illustrates the types of joint which can occur:

4 e |

T oA 1
jeiat excess solder ma erfact , cleawm joint wikl
n.”w wrbn.....“hr“.)mmﬁh.. hide a dry h.u;.n_u.. Wknnu_a_._o:ww.ninww...h?._ n_.n.in&”lmm..nu i
The soldering~iron can be used to remove solder, by shaking the old solder off it
and applying to the joint. It may be necessary to invert work and let the solder run
downwards on to the iron. When excess solder has been removed, it is possible to inspect
the joint and resolder if necessary.
Do not put too much solder on the iron, but tin it before each joint and act fast
80 that the flux does not have time to burn off.

" el 44 3
f (\% ny lr Lo TRE
o 1 gl 4 & & "o T 70 .\h.\mx\ & i
/ LAyl O A :
G ; SN Q) 1o
Ve m\ >uvm=n_x\.wm. [>T = I\ , \ . (R
IR e e Instruction Summary) Arithmetic Operations*®
The COSMAC instruction summary is given in Table 1. R(W).0: Lower-order byte of R(W) .— / INSTRUCTION OF
Hexadecimal notation is used to refer to the R(W).1: Higher-order byte of R(W) ADD MNEMONIC |CODE OPERATION
4-bit binary codes. NO = Least significant Bit of N Register AD ADD Fa MIR(X)] 70-DF
In all registers bits are numbered from the least sig- DOW ﬁﬁmﬂﬁhm< ADI FC MR **U‘.Don % R(P) +1
nificant bit (LSB) to the most significant bit (MSB) Operation Notation ADD WITH CARRY ”Wm_ 74 MIR(X)) +D +DF~DF. D
starting with 0. M(R(N)) + D; R(N) + 1 ! IMMEDIATE c u_ﬁ%; +D +DF-DF, D
: . : L : A 1 ; SUBTRACT D Lt
R(W): Register designated by W, where W=N or X, This notation means: The memory byte pointed to by sSD F5 M(R(X})—D-DE
orP ' R(N) is loaded into D, and R(N) is incremented _..u.u. 1 mmemMMH W ._\ﬂﬂmgbﬁm S0l D M(R(P |Dsoom.,% R(P) +1
ofp Ty BORROW e 75 | MIRIX))-D~(NOT DF)-DF, D
TABLE | — [NSTRUCTION SUMMARY J “er s SUBTRACT D WITH Shi =5
by Class of Operation)Tt M / BORROW, IMMEDIATE MI(RIP))-D—-(NOT DF)-DF, D:
. ' &% S SUBTRACT MEMORY M = m_u“ +1
Register Operations SUBTRACT MEMORY SM1 FE oﬁﬁum“wﬁy_..%m, o
S IMMEDIATE - =D D;
op AECRRIN SUBTRACT MEM R{P) +1
INSTRUCTION MNEMONIC | CODE OPERATION KT.:; / ORGSR 77 | D=M(R(X))—(NOT DF)-DF, D
INCREMENT REG N INC N RIN] +1 el wd v SUBTRACT MEMORY WITH SMBI 7F DM
DECREMENT REG N pEC < | 28 | R(N)-1 BORROW, IMMEDIATE D MBI NG O e B8
i INCREMENT REG X IRX 60 R{X) +1 w{ B i g E&]
AR GET LOW REGN GLO 8N | B(N).O-D e nstructions — Short Branch
2| ,b g PUT LOWREG N v__.,.o ‘%l mﬂ: -
Rl Af GET HIGH REG N GHI :: A : SHORT
)M ! PUT HIGH REG N PHI BN | D>R(NLI ; ; gl o o 30, | MIRED-APLO
oN<| j (SEE SKP) 38 [RP)
| Y Memory Reference : K SHORT BRANCH IF D=0 BZ 32 IF D=0, M(R(P))-R(P).0
) { 1 ELSE RIP) +1 3
o1 ® / oP ¢ SHORT BRANCH IF “BNZ
e INSTRUCTION MNEMONIC | CODE OPERATION , D-NOT 0 g iz mrwmow cn. MI(R(P))-R(P).0
oy\FC 0Ol ADVIAN ON N | MERISD: SHORT BRANCH IF DF=1 BDF | Ela)
| 9 LOAD ADVANCE LDA N M(R(N)=+DR(N) +1 mxwuq BRANCH, IF POS BPZ l e | IF DF=1, M(R(P))-R(P).O
ofjsA OF LOAD VIA X LDX FO | MR(X)~D L SieEry 33 i
\ LOAD VIA X AND ADVANCE | LDXA 72 7 | MR(X)}>D; RIX) +1 o BRANCH IF EQUAL | BGE ’
e dNile; LOAD IMMEDIATE LDI F8 M{R(P)}=D; R(P) + 1 mxoﬁmmmﬁmx
STORE VIAN STR 5N D-M(R(N)) SHORT mmnzo: IEaE-G BNF 38* | IF DF=0, MIRIP))-R(P}.0
STORE VIA X AND STXD 73 | D=M(R(X)); R{X) -1 i NCH IF MINUS | BM ELSE R(P) +1]
DECREMENT mxmmﬁ mm»zo: IF LESS BL
RANCH G Rl BQ 31 IF Q=1, M(R(P}}-RI{P).0
: o i ELSE R(P) +1
Logic Operations® : SHORT BRANCH IF Q=0 8NQ 39 IF Q=0. M(R(P1)-R(P) 0
op : SHORT BRANCH IF EF1- ELSE Rl
INSTRUCTION MNEMONIC | CODE OPERATION {1=Vsz} 1 B1 34 IF EF1=1, M(R(P))~R(P).O
SHORT BRANCH IF E ELSE R(P) +1
OR OR F1 M(R(X)) OR D-D e (0 = Vel EF1-0 BN1 3c IF EF1=0, M(R(P)}+R(P).0)
OR IMMEDIATE ORI F9 M(R(P)) OR D—D: R(P) +1 SHORT G ELSE R(P) +1
EXCLUSIVE OR XOR F3 M(R(X)) XOR D-D TovES IF EF2=1 82 15 |F EF2=1, M(R(P)}=R(P).0
EXCLUSIVE OR IMMEDIATE | XRI FB M(R(P}) XOR D-D; R(P} +1 s " ELSE R(P) +1
AND AND F2 M(R(X)) AND D~D g CH IF EF2=0 BN2 b IF EF2=0, M(R(P))=R(P}.0
AND IMMEDIATE ANI (FA > | M(R(P)) AND D~D;R(P) +1 SHORT BRe o : ELSE R(P) +1
SHIFT RIGHT SHR Fé SHIFT D RIGHT, LSB(D)=>DF, RS i CH IF EF3=1 83 36 IF EF3=1, M(R(P})*R(P).0
0-+MSB(D) SHORT BRANC ELSE R(P) +1
SHIFT RIGHT WITH SHRC 76* | SHIFT D RIGHT, LSB(D)-DF, . ik H IF EF3=0 BN3 3E IF EF3=0, M(RI(P)}=R(P).0
CARRY DF-MSB(D} SHORTIE & e ELSE R(P) +1
RING SHIFT RIGHT RSHR 1L (1= Vss) CH IF EF4=1 B4 37 IF EF4=1, M(R(P))*R(P).0
SHIFT LEFT SHL FE SHIFT D LEFT, MSB(D)-DF, | SHORT ELSE R(P) +1
0~+LSB(D) 2 (0 <mm>znx IF EF4=0 BN4 F IF EF4=0, M(R(P))=R(P).0
SHIFT LEFT WITH SHLC 7% | SHIFT D LEFT, MSB(D)-DF, lw \ CEl) ELSE R(P) +1
CARRY DF-+LSB(D) .
RING SHIFT LEFT RSHL o
SNOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE . A
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.
STRUCTIONS //

THE ARITHMETIC OPERATIONS AND THE SHIFT IN!
THE DF.

S#NOTE:
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER
Pl

=

Next, note that in addition to various dents in the upper surface, one end h 2

ﬂ%mﬂmmmwaz i noteh cut into its upper mcwwmnm as shown above. This notch is used to ensure that
S] package is inserted in position the correct way round. Failure to observe the corre
Component List: / orientation will totally destroy the IC's. The notch must tie up with the component
overlay diagram.
Integrated Circuits and Sockets Resistors (% Watt 5% i Sometimes, instead ofgor in addition to,the notch, a small hole or bump will appear
Gehs e, | on the upper mc_.,_.,wnm of the IC to identify Pin 1. The pins are numbered, on all
Ic1 : 1802 R1-R17 1K (17 off) { chips, anticlockwise around the chip, as shown, when looking at the top surface. The
I€2,.1C3. - 7473 (2.0fF) R18-R22 2K2 (5 off) i largest IC, the Microprocessor itself, is a 40-pin device, and a socket is included, for
1C4, 1C5 2111 (2 off) R23-R25 100 (3 off) - it, in the kit. Do not remove the IC from its packing until absolutely necessary.
1c6 74LS 132 R26, R27 10K (2 off) : i CAPACITORS
1C7 T4LS 244 R28 18K There are just two types of capacitor :
1C8 7402 nw a):Electrolykin. : .Cily Loy £od .81l identical,
1C9, IC10 74174 (2 off) Diodes, Transistors, LED's
1C11, 1C12 $368 (2 off) m These devices have two pins - one of them is "+"
1c13 74150 D1 IN4OO] =4 ! and one "-", as shown on the body of the device.
1C14 7474 D2-DB IN4148 (Typically) (7 off) ~ The + side is marked on the PCB so that these capacitors
1IC15 7493 LD1-LD3 Red Led's (3 off) can be inserted the correct way round.
40-pin socket for 1C1 TR1 N2926 (typically)
DI1,DI2 FND 500 (2 off) .) Genamic i Bultar By Q ibiycCeds
Capacitors
These are flat devices with two pins and can be
C1,C2,C3 22 nF (typically) inserted any way round - C4, C5, Cé6 are marked "10n"
Electrolytic] ¢ and C7 is marked "100n" - perhaps with some other
C4,C5,C6 10 nF ceramic letters, depending upon the type supplied.
G 100 nF ceramic RESISTORS i
All resistors have red bodies and are similar, apart from coloured bands which
Miscellaneous identify the value of the resistor according to the following table:
20 Keyswitches
Subminiature on/off switch b n..m%bov_w Bands
Vero pins (200 off) GoL ,
PCB hﬂm ﬂwpw B 4 v gl s o First Second Third
EDUKIT manual
Card of keyboard legends. R1-R17 1K BROWN LACK RED
COMPONENT IDNTIFICATION R18-R22 2K2 RED RED RED
There are several different types of component - they are listed and described below. R23-R25 100 BROWN BLACK BROWN
fefer, throughout, to the Component overlay. R26, RZ7 10K BROWN BLACK ORANGE
KEY SWITCHES R28 18K BROWN GREY ORANGE
The three pins on the switches may need cleaning before i Resistors may be inserted any way round.
soldering - they fit their holes closely and must not DIODES, TRANSISTORS, LED's. i
be tinned before insertion.
INTEGRATED CIRCUITS AND SOCKETS The transistor (TR1) has 3 leads and 2N2926 written
The black plastic packages with pins sticking out are the integrated circuits (IC's) X on it. It must be inserted, as shown here, with
themselves, sometimes called "chips" (or even bugs). These packages are of the "dual in) correct pins in correct holes.
line" type (DIL) whereby each has two identical rows of pins - one on each side of the ’ o
package. o There are three types of diode. They must all be inserted the correct way around.
m sl i mw m. 7Pin , a) IN4001 (D1) has a black bddy and a silver ring around one end.
% The ring end must tie up with the black stripe
ﬂomﬂ.\ Aw_ SNTLLST73 - in1 ,ﬂiﬂx on the Component Overlay. 5
vi F7919 x silver i
T oooo nnoﬂmimzu b) Small signal diodes: D2 - DB. Again, one end is striped - with Black or yellow - |
b e T TR | and must tie up with the striped end shown on the
Various markings are to be found on the top of the DIL packages. In order to]l.HUII Component Overlay.
identify a given device from its IC number in the component list, first read the device
type number in the list, e.g., 9368, 7402 or 74L5244 etc. This combination of numbers ¢) Light-Emitting Diodes (LED's) LD1, LD2, LD3.
and letters should appear on the chip somewhere, sometimes with various other letters .
and numbers. E.G, 7473 may appear (as shown) with an SN in front and an LS in the middle. ToP OF PcB These are translucent red objects with two
Identify each device before proceeding. %

.E@?z_ 9 E:m|n:mwo:m_muw:m:w3mo.n:mn.ajmwojmuwsm

._aon z scmﬁvmmjmmuwmaw:ﬁrmrcpmmmwm_._os_:w:n:m

Sﬂi ﬁ @ % nﬁmumms,s_;rvnmowpmzwmamnng&:cpvr
LONE PiN

@ TowARDS KEYBOARD

